Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading
The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to au...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-07, Vol.129, p.188-198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems.
There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2021.05.021 |