Numerical simulation of GaAs MESFETs with a p-buffer layer on a semi-insulating substrate compensated by deep traps

A numerical analysis of GaAs MESFETs with a p-buffer layer on a semi-insulating substrate is performed in which impurity compensation by traps in the substrate is considered. It is shown that the use of a thick p-buffer layer results in a lower device current due to the formation of a steep barrier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1989-09, Vol.37 (9), p.1371-1379
Hauptverfasser: Horio, K., Fuseya, Y., Kusuki, H., Yanai, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical analysis of GaAs MESFETs with a p-buffer layer on a semi-insulating substrate is performed in which impurity compensation by traps in the substrate is considered. It is shown that the use of a thick p-buffer layer results in a lower device current due to the formation of a steep barrier at the channel-substrate interface. It is also shown that with higher trap and acceptor densities in the substrate, the drain current is reduced due to the decrease in the substrate current. This decrease occurs because a negative-space-charge layer is formed in the substrate. It is demonstrated that when the p-buffer layer is fully depleted, its acceptors play the same electrical role as the acceptors within the space-charge region of the semi-insulating substrate. Thus, using a thick p-buffer layer has the same effect as using a substrate with a high density of traps, i.e. it minimizes the short-channel effects in GaAs MESFETs. Therefore, if the trap density in the substrate is low, the short-channel effects can be reduced by introducing a p-buffer layer or a buried p-layer.< >
ISSN:0018-9480
1557-9670
DOI:10.1109/22.32220