Nitrogen activation to reduction on a recyclable V-SAC/BN-graphene heterocatalyst sifted through dual and multiphilic descriptors

[Display omitted] Efficient reduction of nitrogen to ammonia at a minimal cost would require a recherche catalyst tailored by assimilating the inherent electronic and reactive nature of Single Atom Catalysts (SACs) on heteroatom doped-graphene. A full-scale DFT study accounting for disparate descrip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-10, Vol.600, p.480-491
Hauptverfasser: Maibam, Ashakiran, Krishnamurty, Sailaja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Efficient reduction of nitrogen to ammonia at a minimal cost would require a recherche catalyst tailored by assimilating the inherent electronic and reactive nature of Single Atom Catalysts (SACs) on heteroatom doped-graphene. A full-scale DFT study accounting for disparate descriptions of atomic orbitals and representation of support, has been carried out to identify the most active and recyclable SAC/B-graphene composite as catalyst for Nitrogen Reduction Reaction (NRR). Dual and Multiphilic descriptors derived reactivity pattern of six different metal SACs V, Fe, Ni, Ru, W and Re on periodic and non-periodic paradigms of pristine and BN-pair doped graphene supports, align with the calculated chemisorption efficacy and activation of N2. The enzymatic route of nitrogen reduction on three most ideal metal SACs (V, W and Re) culminates Vanadium SAC, a relatively cheaper metal, anchored on BNring-graphene with an energy barrier of ⩽1.24 eV as a highly active and recyclable catalyst for NRR.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.05.027