On the balance between practical relevance and standardization - Testing the effects of zinc and pyrene on native nematode communities in soil microcosms

Soils are among the most densely inhabited and biodiverse habitats on our planet, and many important soil ecosystem services depend on the health condition of the native soil fauna. Anthropogenic stress such as chemical pollution acting on the native soil fauna might jeopardize these functions. Labo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-09, Vol.788, p.147742-147742, Article 147742
Hauptverfasser: Höss, Sebastian, Reiff, Nicola, Traunspurger, Walter, Helder, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soils are among the most densely inhabited and biodiverse habitats on our planet, and many important soil ecosystem services depend on the health condition of the native soil fauna. Anthropogenic stress such as chemical pollution acting on the native soil fauna might jeopardize these functions. Laboratory microcosm tests are an appropriate tool for assessing the risk of chemicals on the native soil fauna and can be regarded as intermediate tier tests, bridging the gap between single species toxicity tests and field testing. Nematodes are one of the most abundant and divers soil invertebrates, and as such native nematode communities might be suitable for ecotoxicological assessments in laboratory microcosm set ups. In order to test such a small-scale (30 g soil) microcosm system, two different chemicals (zinc and pyrene) were assessed in various soil types for their effects on the respective native nematode communities. Various community parameters such as total nematode density, genus richness and genus composition, as well as trait-related indices (e.g. maturity index) were monitored over a period of 8–10 weeks. The response of the nematode communities strongly varied between soil types, and these differences were more pronounced for Zn than for pyrene. Interestingly, the structure of the respective native nematode communities was shown to play a larger role for explaining the varying toxic effects than soil properties governing the bioavailability of the spiked chemicals. We demonstrated that exposure of natural nematode communities in their original soil matrix to the metal zinc and to pyrene under climatically highly controlled conditions resulted in quantitatively and qualitatively distinct responses. Upon comparison of various community indices, the maturity index was shown to be the most sensitive toxicity endpoint for all tested soils and chemicals. [Display omitted] •Microcosms with native nematode communities are suitable intermediate tier tests.•The response of soil nematodes to chemicals is mainly related to community composition.•Zinc and pyrene induced quantitively and qualitatively distinct effects on nematodes.•The Maturity Index turned out to be the most sensitive community-based toxicity endpoint.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.147742