Downregulation of fibronectin 1 attenuates ATRA-induced inhibition of cell migration and invasion in neuroblastoma cells
Neuroblastoma (NB) is the most common malignant extra cranial solid tumors in children. It has been well established that retinoic acid (RA) inhibits proliferation of neuroblastoma (NB) by blocking cells at G1 phase of the cell cycle. Clinically, RA has been successfully used to treat NB patients. H...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2021-10, Vol.476 (10), p.3601-3612 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuroblastoma (NB) is the most common malignant extra cranial solid tumors in children. It has been well established that retinoic acid (RA) inhibits proliferation of neuroblastoma (NB) by blocking cells at G1 phase of the cell cycle. Clinically, RA has been successfully used to treat NB patients. However, the precise mechanism underlying the potent action of RA-treated NB is not fully explored. In this work, we carried out a gene expression profiling by RNA sequencing on all-
trans
retinoic acid (ATRA)-treated NB cells. Cancer-related pathway enrichment and subsequent protein–protein interaction (PPI) network analysis identified fibronectin 1 (FN1) as one of the central molecules in the network, which was significantly upregulated during ATRA treatment. In addition, we found that although downregulation of FN1 had no significant effects on either cell proliferation or cell cycle distributions in the presence or absence of ATRA, it increased cell migration and invasion in NB cells and partially blocked ATRA-induced inhibition of cell migration and invasion in SY5Y NB cells. Consistent with this finding, FN1 expression levels in NB patients positively correlate with their overall survivals. Taken together, our data suggest that FN1 is a potential target for effective ATRA treatment on NB patients, likely by facilitating ATRA-induced inhibition of cell migration and invasion. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-021-04113-5 |