Bioinspired Soft Robots Based on the Moisture‐Responsive Graphene Oxide
Graphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture‐responsive sensors and actuators due to the strong water–GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture‐responsive act...
Gespeichert in:
Veröffentlicht in: | Advanced science 2021-05, Vol.8 (10), p.2002464-n/a, Article 2002464 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture‐responsive sensors and actuators due to the strong water–GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture‐responsive actuators based on GO have shown distinct advantages over other stimuli‐responsive materials and devices. Particularly, inspired by nature organisms, various moisture‐enabled soft robots have been successfully developed via rational assembly of the GO‐based actuators. Herein, the milestones in the development of moisture‐responsive soft robots based on GO are summarized. In addition, the working mechanisms, design principles, current achievement, and prospects are also comprehensively reviewed. In particular, the GO‐based soft robots are at the forefront of the advancement of automatable smart devices.
In recent years, moisture‐responsive actuators based on graphene oxide (GO) have revealed a series of distinct advantages over other stimuli‐responsive materials and devices. In this research news, the milestones in moisture‐responsive soft robots based on the GO, including working mechanisms, design principles, current achievement, and prospects, are comprehensively reviewed. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202002464 |