Dissecting the PRSS37 interactome and potential mechanisms leading to ADAM3 loss in PRSS37-null sperm

A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for sperm migration from the uterus into the oviduct and sperm-egg binding in mice. Disruption of PRSS37 results in male infertility concurrent with the absence of mature ADAM3 from cauda epididymal sperm. However, ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2021-05, Vol.134 (10)
Hauptverfasser: Xiong, Wenfeng, Shen, Chunling, Li, Chaojie, Zhang, Xiaohong, Ge, Haoyang, Tang, Lingyun, Shen, Yan, Lu, Shunyuan, Zhang, Hongxin, Han, Mi, Zhang, Aijun, Wang, Jinjin, Wu, Youbing, Fei, Jian, Wang, Zhugang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for sperm migration from the uterus into the oviduct and sperm-egg binding in mice. Disruption of PRSS37 results in male infertility concurrent with the absence of mature ADAM3 from cauda epididymal sperm. However, how PRSS37 modulates ADAM3 maturation remains largely unclear. Here, we determine the PRSS37 interactome by GFP immunoprecipitation coupled with mass spectrometry in PRSS37-EGFP knock-in mice. Three molecular chaperones (CLGN, CALR3 and PDILT) and three ADAM proteins (ADAM2, ADAM6B and ADAM4) were identified to be interacting with PRSS37. Coincidently, five of them (except ADAM4) have been reported to interact with ADAM3 precursor and regulate its maturation. We further demonstrated that PRSS37 also interacts directly with ADAM3 precursor and its deficiency impedes the association between PDILT and ADAM3. This could contribute to improper translocation of ADAM3 to the germ cell surface, leading to ADAM3 loss in PRSS37-null mature sperm. The understanding of the maturation mechanisms of pivotal sperm plasma membrane proteins will pave the way toward novel strategies for contraception and the treatment of unexplained male infertility.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.258426