Impact resistance and energy absorption mechanisms in hybrid composites
The response of hybrid composites to low-velocity impact loading has been investigated. The energy absorbing mechanisms of laminates containing various fibers were studied primarily by means of the instrumented falling dart impact testing technique. Static indentation tests and scanning electron mic...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 1989, Vol.34 (4), p.305-335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The response of hybrid composites to low-velocity impact loading has been investigated. The energy absorbing mechanisms of laminates containing various fibers were studied primarily by means of the instrumented falling dart impact testing technique. Static indentation tests and scanning electron microscopy (SEM) were also employed to assist in the identification of failure mechanisms. The composites containing polyethylene (PE) fibers, which were of high strength and high ductility, were found to be effective in both dissipating impact energy and resisting through penetration. Polyester (PET) fiber reinforced epoxy also exhibited superior impact characteristics even though the PET fabric layers without epoxy did not have good modulus or ductility. Good energy absorbing capability was also observed in epoxy reinforced with woven fabrics made of high-performance Nylon fibers. Nylon, PE and PET fibers were found to enhance the impact resistance of graphite fiber composites. Upon impact loading, the composites containing either PE or PET fibers in general exhibited a great degree of flexural plastic deformation and some level of delamination, thereby dissipating a significant amount of strain energy. Hybrids containing Nylon fabric showed analogous behavior, but to a lesser degree. The stacking sequence in hybrid laminates was found to play a critical role in controlling plastic deformation and delamination. This implies that the stacking sequence is a major factor governing the overall energy sorbing capability of the hybrid structure. The penetration resistance of hybrid composites appeared to be dictated by the toughness (strength plus ductility) of their constituent fibers. The fiber toughness must be measured under high strain rate conditions. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/0266-3538(89)90002-X |