Patterns of Sulcal depth and cortical thickness in Parkinson’s disease

Previous voxel-based morphometry (VBM) and cortical thickness (CT) studies on Parkinson’s disease (PD) have mainly reported the gray matter size reduction, whereas the shape of cortical surface can also change in PD patients. For the first time, we analyzed sulcal depth (SD) patterns in PD patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain imaging and behavior 2021-10, Vol.15 (5), p.2340-2346
Hauptverfasser: Wang, Erlei, Jia, Yujing, Ya, Yang, Xu, Jin, Mao, Chengjie, Luo, Weifeng, Fan, Guohua, Jiang, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous voxel-based morphometry (VBM) and cortical thickness (CT) studies on Parkinson’s disease (PD) have mainly reported the gray matter size reduction, whereas the shape of cortical surface can also change in PD patients. For the first time, we analyzed sulcal depth (SD) patterns in PD patients by using whole brain region of interest (ROI)-based approach. In a cross-sectional study, high-resolution brain structural MRI images were collected from 60 PD patients without dementia and 56 age-and sex-matched healthy controls (HC). SD and CT were estimated using the Computational Anatomy Toolbox (CAT12) and statistically compared between groups on whole brain ROI-based level using statistical parametric mapping 12 (SPM12). Additionally, correlations between regional brain changes and clinical variables were also examined. Compared to HC, PD patients showed lower SD in widespread regions, including temporal (the bilateral transverse temporal, the left inferior temporal, the right middle temporal and the right superior temporal), insular (the left insula), frontal (the left pars triangularis, the left pars opercularis and the left precentral), parietal (the bilateral superior parietal) and occipital (the right cuneus) regions. For CT, only the left pars opercularis showed lower CT in PD patients compared to HC. No regions showed higher SD or CT in PD patients compared to HC. In PD patients, a significant positive correlation was found between SD of the left pars opercularis and MMSE scores, such that lower MMSE scores were related to lower SD of the left pars opercularis. Our results of widespread lower SD, but relatively localized lower CT, indicate that SD seems to be more sensitive to brain changes than CT and may be mainly affected by white matter damage. Hence, SD may be a more promising indicator to investigate the surface shape changes in PD patients. The significant positive correlation between SD of the left pars opercularis and MMSE scores suggests that SD may be prognostic of future cognitive decline.
ISSN:1931-7557
1931-7565
DOI:10.1007/s11682-020-00428-x