SnapShot: Neuronal dysfunction in inflammation

Neuronal function relies on tightly controlled cytoskeleton transport with adaptive cargo trafficking as prerequisite for synaptic transmission. During inflammation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), axonal transport efficiency declines, followed by neuro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2021-05, Vol.109 (10), p.1754-1754.e1
Hauptverfasser: Kneussel, Matthias, Friese, Manuel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuronal function relies on tightly controlled cytoskeleton transport with adaptive cargo trafficking as prerequisite for synaptic transmission. During inflammation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), axonal transport efficiency declines, followed by neurodegeneration. Furthermore, neuroinflammation causes an imbalance between excitatory and inhibitory transmission, triggering synaptic dysfunction and loss. Recent data suggest that neuronal transport and synaptic deficits during neuroinflammation are functionally interconnected. To view this SnapShot, open or download the PDF. Neuronal function relies on tightly controlled cytoskeleton transport with adaptive cargo trafficking as prerequisite for synaptic transmission. During inflammation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), axonal transport efficiency declines, followed by neurodegeneration. Furthermore, neuroinflammation causes an imbalance between excitatory and inhibitory transmission, triggering synaptic dysfunction and loss. Recent data suggest that neuronal transport and synaptic deficits during neuroinflammation are functionally interconnected. To view this SnapShot, open or download the PDF.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2021.03.005