Computational Identification of Novel Families of Nonfullerene Acceptors by Modification of Known Compounds

We considered a database of tens of thousands of known organic semiconductors and identified those compounds with computed electronic properties (orbital energies, excited state energies, and oscillator strengths) that would make them suitable as nonfullerene electron acceptors in organic solar cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-05, Vol.12 (20), p.5009-5015
Hauptverfasser: Zhao, Zhi-Wen, Omar, Ömer H, Padula, Daniele, Geng, Yun, Troisi, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We considered a database of tens of thousands of known organic semiconductors and identified those compounds with computed electronic properties (orbital energies, excited state energies, and oscillator strengths) that would make them suitable as nonfullerene electron acceptors in organic solar cells. The range of parameters for the desirable acceptors is determined from a set of experimentally characterized high-efficiency nonfullerene acceptors. This search leads to ∼30 lead compounds never considered before for organic photovoltaic applications. We then proceed to modify these compounds to bring their computed solubility in line with that of the best small-molecule nonfullerene acceptors. A further refinement of the search can be based on additional properties like the reorganization energy for chemical reduction. This simple strategy, which relies on a few easily computable parameters and can be expanded to a larger set of molecules, enables the identification of completely new chemical families to be explored experimentally.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c01010