Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common bean) seeds revealed through desorption electrospray ionization-mass spectrometry imaging
Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA). Presumably, they are involved in the regulation of seed embryogenesis, dormancy, and germination. However, their spatial localization in the developing Phaseolus vulgaris L. (common bean) seeds has not been full...
Gespeichert in:
Veröffentlicht in: | Phytochemistry (Oxford) 2021-08, Vol.188, p.112812-112812, Article 112812 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA). Presumably, they are involved in the regulation of seed embryogenesis, dormancy, and germination. However, their spatial localization in the developing Phaseolus vulgaris L. (common bean) seeds has not been fully elucidated. Therefore, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was performed to investigate their localization in the developing seeds. Peaks corresponding to the chemical formulae of αLA and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were localized mainly in the radicle and seed coat, while that of 12-oxo-phytodienoic acid (OPDA) in the seed coat. This was consistent with the quantitative results obtained using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis. In contrast, DESI-tandem MSI (MS/MSI) and LC-ESI-MS/MS analyses showed that the effects of isomers on the DESI-MSI ion images were small for αLA and OPDA, but not for OPC-8:0. This indicated that DESI-MSI could accurately visualize αLA and OPDA, while DESI-MS/MSI was necessary to visualize OPC-8:0. The results demonstrated that free αLA and OPC-8:0 were abundant in the radicle and seed coat, while free OPDA was accumulated in the seed coat. Interestingly, the localization pattern of OPDA was similar to that of JA. In addition, compared to the concentrations of OPDA, the concentration of OPC-8:0 was lower in the seed coat and higher in the radicle. These results suggest that OPDA and/or JA play a biological role mainly in the seed coat, while OPC-8:0 is biologically active mainly in the radicle. Therefore, DESI-MSI coupled with LC-ESI-MS is a useful tool for spatial analysis of JA-related compounds in developing common bean seeds.
[Display omitted]
•DESI-MSI of JA-related compounds in developing common beans was performed.•Free αLA, OPDA, and OPC-8:0 were abundant in the seeds.•OPDA was mainly localized in the seed coat.•αLA and OPC-8:0 were mainly localized in the radicle and seed coat.•DESI-MSI with LC-ESI-MS verified the unique localization of JA-related compounds. |
---|---|
ISSN: | 0031-9422 1873-3700 |
DOI: | 10.1016/j.phytochem.2021.112812 |