Mixing and Mass Transfer in Ladle Refining Process

The mixing time and slag-metal mass transfer coefficient in gas bubbling and induction stirring were measured by water model and plant scale experiments. The mixing time could be related to parameter εV–2/3. In the range of low εV–2/3, the mixing time for induction stirring was shorter than that for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 1989/02/15, Vol.29(2), pp.148-153
Hauptverfasser: Ogawa, Kanehiro, Onoue, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mixing time and slag-metal mass transfer coefficient in gas bubbling and induction stirring were measured by water model and plant scale experiments. The mixing time could be related to parameter εV–2/3. In the range of low εV–2/3, the mixing time for induction stirring was shorter than that for gas bubbling. In the range of large εV–2/3, there was litle difference between the two methods of stirring. These phenomena can be explained by a circulating time of bulk flow in gas bubbling and induction stirring. Metal–phase mass transfer coefficient in water model and plant scale experiments could be related to parameter εV–2/3. The metal-phase mass transfer coefficient for gas bubbling was larger than that for induction stirring. These phenomena can be explained by the turbulence fluctuation velocity near the slag-metal interface in gas bubbling and induction stirring.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.29.148