Differentiation capacity of dental pulp stem cell into inner ear hair cell using an in vitro assay: a preliminary step toward treating sensorineural hearing loss

Purpose Sensorineural hearing loss (SNHL) is commonly caused by the death or dysfunction of cochlear cell types as a result of their lack of regenerative capacity. However, regenerative medicine, such as stem cell therapy, has become a promising tool to cure many diseases, including hearing loss. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European archives of oto-rhino-laryngology 2022-04, Vol.279 (4), p.1805-1812
Hauptverfasser: Adriztina, Indri, Munir, Delfitri, Sandra, Ferry, Ichwan, Muhamad, Bashiruddin, Jenny, Putra, Imam Budi, Farhat, Sembiring, Rosita Juwita, Sartika, Cynthia Retna, Chouw, Angliana, Pratiwi, Endah Dianty
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Sensorineural hearing loss (SNHL) is commonly caused by the death or dysfunction of cochlear cell types as a result of their lack of regenerative capacity. However, regenerative medicine, such as stem cell therapy, has become a promising tool to cure many diseases, including hearing loss. In this study, we determined whether DPSCs could differentiate into cochlear hair cell in vitro. Methods DPSCs derived from human third molar dental pulp were induced into NSCs using a medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) for 7 days, and then into cochlear hair cell using a medium containing EGF and IGF-1 for the next 14 days. We used the neuroepithelial protein marker nestin and cochlear hair cell marker myosin VIIa as the markers for cells differentiation. Cells expressing the positive markers under the microscope were confirmed to have differentiated into cochlear hair cell. Results DPSCs were successfully induced to differentiate into NSCs, with mean 24% nestin-positive cells. We found that DPSC-derived NSCs have a great capacity in differentiating into inner ear hair cell-like cells with an average of 81% cells presenting myosin VIIa. Thus, DPSCs have high potential to serve as a good resource for SNHL treatment. Conclusion We found the high potential of DPSCs to differentiate into NSC. The ability of DPSCs in differentiating into neural lineage cell made them a good candidate for regenerative therapy in neural diseases, such as SNHL
ISSN:0937-4477
1434-4726
DOI:10.1007/s00405-021-06864-9