Comparison of structural MRI brain measures between 1.5 and 3 T: Data from the Lothian Birth Cohort 1936
Multi‐scanner MRI studies are reliant on understanding the apparent differences in imaging measures between different scanners. We provide a comprehensive analysis of T1‐weighted and diffusion MRI (dMRI) structural brain measures between a 1.5 T GE Signa Horizon HDx and a 3 T Siemens Magnetom Prisma...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2021-08, Vol.42 (12), p.3905-3921 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi‐scanner MRI studies are reliant on understanding the apparent differences in imaging measures between different scanners. We provide a comprehensive analysis of T1‐weighted and diffusion MRI (dMRI) structural brain measures between a 1.5 T GE Signa Horizon HDx and a 3 T Siemens Magnetom Prisma using 91 community‐dwelling older participants (aged 82 years). Although we found considerable differences in absolute measurements (global tissue volumes were measured as ~6–11% higher and fractional anisotropy [FA] was 33% higher at 3 T than at 1.5 T), between‐scanner consistency was good to excellent for global volumetric and dMRI measures (intraclass correlation coefficient [ICC] range: .612–.993) and fair to good for 68 cortical regions (FreeSurfer) and cortical surface measures (mean ICC: .504–.763). Between‐scanner consistency was fair for dMRI measures of 12 major white matter tracts (mean ICC: .475–.564), and the general factors of these tracts provided excellent consistency (ICC ≥ .769). Whole‐brain structural networks provided good to excellent consistency for global metrics (ICC ≥ .612). Although consistency was poor for individual network connections (mean ICCs: .275−.280), this was driven by a large difference in network sparsity (.599 vs. .334), and consistency was improved when comparing only the connections present in every participant (mean ICCs: .533–.647). Regression‐based k‐fold cross‐validation showed that, particularly for global volumes, between‐scanner differences could be largely eliminated (R2 range .615–.991). We conclude that low granularity measures of brain structure can be reliably matched between the scanners tested, but caution is warranted when combining high granularity information from different scanners.
In this comprehensive analysis, we compared T1‐weighted and diffusion MRI structural brain measures between a 1.5 and 3 T scanner using 91 participants (aged 82 years). We found that large‐scale brain structures (whole‐brain, ventricular and tissue volumes; global diffusion MRI measures; and global network metrics) can be reliably matched between these scanners, but caution is warranted when combining regional measures from different scanners.
|
---|---|
ISSN: | 1065-9471 1097-0193 |
DOI: | 10.1002/hbm.25473 |