Increased oxygenation is associated with myocardial inflammation and adverse regional remodeling after acute ST-segment elevation myocardial infarction

Objectives To explore the relationships between oxygenation signal intensity (SI) with myocardial inflammation and regional left ventricular (LV) remodeling in reperfused acute ST-segment elevation myocardial infarction (STEMI) using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2021-12, Vol.31 (12), p.8956-8966
Hauptverfasser: Shi, Ke, Ma, Min, Yang, Meng-Xi, Xia, Chun-Chao, Peng, Wan-Lin, He, Yong, Li, Zhen-Lin, Guo, Ying-Kun, Yang, Zhi-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives To explore the relationships between oxygenation signal intensity (SI) with myocardial inflammation and regional left ventricular (LV) remodeling in reperfused acute ST-segment elevation myocardial infarction (STEMI) using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR). Methods Thirty-three STEMI patients and 22 age- and sex-matched healthy volunteers underwent CMR. The protocol included cine function, OS imaging, precontrast T1 mapping, T2 mapping, and late gadolinium enhancement (LGE) imaging. A total of 880 LV segments were included for analysis based on the American Heart Association 16-segment model. For validation, 15 pigs (10 myocardial infarction (MI) model animals and 5 controls) received CMR and were sacrificed for immunohistochemical analysis. Results In the patient study, the acute oxygenation SI showed a stepwise rise among remote, salvaged, and infarcted segments compared with healthy myocardium. At convalescence, all oxygenation SI values besides those in infarcted segments with microvascular obstruction decreased to similar levels. Acute oxygenation SI was associated with early myocardial injury (T1: r = 0.38; T2: r = 0.41; all p < 0.05). Segments with higher acute oxygenation SI values exhibited thinner diastolic walls and decreased wall thickening during follow-up. Multivariable regression modeling indicated that acute oxygenation SI ( β = 2.66; p < 0.05) independently predicted convalescent segment adverse remodeling (LV wall thinning). In the animal study, alterations in oxygenation SI were correlated with histological inflammatory infiltrates ( r = 0.59; p < 0.001). Conclusions Myocardial oxygenation by OS-CMR could be used as a quantitative imaging biomarker to assess myocardial inflammation and predict convalescent segment adverse remodeling after STEMI. Key Points • Oxygenation signal intensity (SI) may be an imaging biomarker of inflammatory infiltration that could be used to assess the response to anti-inflammatory therapies in the future. • Oxygenation SI early after myocardial infarction (MI) was associated with left ventricular segment injury at acute phase and could predict regional functional recovery and adverse remodeling late after acute MI. • Oxygenation SI demonstrated a stepwise increase among remote, salvaged, and infarcted segments. Infarcted zones with microvascular obstruction demonstrated a higher oxygenation SI than those without. However, the former showed less pronounced changes over
ISSN:0938-7994
1432-1084
DOI:10.1007/s00330-021-08032-3