Fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS) as molecular counting of methamphetamine

A novel and sensitive approach has been presented for the determination of methamphetamine (METH) based on fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS). Due to the affinity of fluorescein molecules to the surface of AuNPs through the electrostatic interaction and there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2021-06, Vol.188 (6), p.191-191, Article 191
Hauptverfasser: Vaziri Heshi, Samira, Shokoufi, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel and sensitive approach has been presented for the determination of methamphetamine (METH) based on fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS). Due to the affinity of fluorescein molecules to the surface of AuNPs through the electrostatic interaction and thereby caused reduction of the distance between fluorescein and AuNPs, the best way for de-excitation of excited fluorescein is FRET. The energy absorbed by fluorescein transferred to AuNPs causes enhancement of the thermal lens effect. The thermal lens of the fluorescence molecule could be enhanced through a proper acceptor. Upon the addition of methamphetamine, the fluorescein molecules are detached from the surface of AuNPs, due to the stronger adsorption of methamphetamine. As a result, the fluorescence of fluorescein recovered, and the thermal lens effect of fluorescein decreased. The mechanism of energy transfer was evaluated by two different methods including time-resolved spectroscopy and thermal lens spectrometry. Under the optimal conditions, the thermal lens signal was linearly proportional to methamphetamine concentration in the range 5 – 80  nM . The limit of detection and limit of quantitation were 1.5  nM  and 4.5  nM , respectively. The detection volume and limit of molecules in the detection volume were 960  attoliter and 87 molecules, respectively. The method was successfully applied for the determination of methamphetamine in human blood plasma and urine. Graphical abstract
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-021-04842-w