An Imidazole Thione-Modified Polyhedral Oligomeric Silsesquioxane for Selective Detection and Adsorptive Recovery of Au(III) from Aqueous Solutions
Developing a material toward simultaneous detection and recovery of gold ions (Au(III)) is highly desirable for the economy and the environment. Herein, we report a highly efficient dual-function material for simultaneous Au(III) detection and recovery by simply introducing abundant imidazole thio...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-05, Vol.13 (20), p.23592-23605 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing a material toward simultaneous detection and recovery of gold ions (Au(III)) is highly desirable for the economy and the environment. Herein, we report a highly efficient dual-function material for simultaneous Au(III) detection and recovery by simply introducing abundant imidazole thione and thioether groups in one system. This material, that is, an imidazole thione-modified polyhedral oligomeric silsesquioxane (POSS-2), was prepared by a mild reaction of an imidazolium-containing POSS and sulfur at ambient temperature. The POSS-2 suspension in water can rapidly and selectively detect Au(III) with a very low limit of detection of 1.2 ppb by fluorescence quenching or a visualized color change from white to dark orange. POSS-2 can also selectively and efficiently capture Au(III) with a maximum adsorption uptake of 1486.5 mg/g. The adsorption process well fits with the pseudo-second-order kinetic and Langmuir models. The intriguing dual-function performance is better than most of the previous Au(III) probes or adsorbents. The mechanism study reveals that the detection and adsorption behavior are mainly caused by the redox reaction and coordination between imidazole thione and thioether groups and Au(III). Furthermore, POSS-2 was successfully utilized to extract gold without interference from a discard CPU. These results indicate the potential application of the present dual-function material for Au(III) detection and recovery from aqueous solutions. More dual-functional materials could be designed and prepared by this simple strategy. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c01965 |