Hypothermal effects on expression of regucalcin, a calcium-binding protein, in the livers of seawater- and fresh water–acclimated milkfish, Chanos chanos

Regucalcin (RGN) is a calcium-binding protein mainly expressed in the liver. It functions in regulating activities of several calcium-dependent enzymes related to energy metabolism, antioxidant mechanisms, and apoptotic pathways. Previous proteomics analyses revealed downregulation of regucalcin in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish physiology and biochemistry 2021-08, Vol.47 (4), p.999-1010
Hauptverfasser: Chang, Chia-Hao, Lee, Tsung-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regucalcin (RGN) is a calcium-binding protein mainly expressed in the liver. It functions in regulating activities of several calcium-dependent enzymes related to energy metabolism, antioxidant mechanisms, and apoptotic pathways. Previous proteomics analyses revealed downregulation of regucalcin in milkfish livers when acclimated to low temperature (18 °C) from normal temperature (28 °C). This study first identified the full-length sequence of milkfish regucalcin from the livers with high similarity in the protein structure and calcium-binding function compared to the regucalcin of other animals. The mRNA and protein expression of regucalcin in the livers of fresh water (FW)– and seawater (SW)-acclimated milkfish under hypothermal acclimation were further analyzed. In FW milkfish, upregulation of regucalcin was found in mRNA and protein levels from 2 to 4 days, respectively, to 1 week after transfer to 18 °C for the two. However, in SW milkfish, upregulation of regucalcin occurred quickly and returned to the basal levels in 1 (mRNA expression) or 2 days (protein expression) up until 1 week after transfer. These results suggested potential roles of regucalcin in maintaining calcium homeostasis and its correlation to differential physiological responses in the livers of milkfish when they were acclimated to FW and SW.
ISSN:0920-1742
1573-5168
DOI:10.1007/s10695-021-00960-7