Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis
Interfacial electron transfer between cocatalyst and photosensitizer is key in heterogeneous photocatalysis, yet the underlying mechanism remains subtle and unclear. Surfactant coated on the metal cocatalysts, greatly modulating the microenvironment of catalytic sites, is largely ignored. Herein, a...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-07, Vol.60 (30), p.16372-16376 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interfacial electron transfer between cocatalyst and photosensitizer is key in heterogeneous photocatalysis, yet the underlying mechanism remains subtle and unclear. Surfactant coated on the metal cocatalysts, greatly modulating the microenvironment of catalytic sites, is largely ignored. Herein, a series of Pt co‐catalysts with modulated microenvironments, including polyvinylpyrrolidone (PVP) capped Pt nanoparticles (denoted as PtPVP), Pt with partially removed PVP (PtrPVP), and clean Pt without PVP (Pt), were encapsulated into a metal–organic framework (MOF), UiO‐66‐NH2, to afford PtPVP@UiO‐66‐NH2, PtrPVP@UiO‐66‐NH2, and Pt@UiO‐66‐NH2, respectively, for photocatalytic hydrogen production. The PVP appears to have a negative influence on the interfacial electron transfer between Pt and the MOF. Compared with PtPVP@UiO‐66‐NH2, the removal of interfacial PVP improves the sluggish kinetics of electron transfer, boosting photocatalytic hydrogen production.
Pt co‐catalysts with modulated microenvironments, including polyvinylpyrrolidone (PVP) capped Pt nanoparticles (denoted as PtPVP), Pt with partially removed PVP (PtrPVP), and clean Pt without PVP (Pt), are encapsulated in a metal–organic framework (MOF). Systemic investigations suggest that the PVP presents negative influence on the interfacial electron transfer between Pt and the MOF, and the PVP removal greatly boosts photocatalysis. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202104219 |