Feeding olive flounder (Paralichthys olivaceus) with Lactococcus lactis BFE920 expressing the fusion antigen of Vibrio OmpK and FlaB provides protection against multiple Vibrio pathogens: A universal vaccine effect

Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish & shellfish immunology 2021-07, Vol.114, p.253-262
Hauptverfasser: Lee, Soon Ho, Beck, Bo Ram, Hwang, Seok-Hong, Song, Seong Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcus lactis BFE920 to express the fusion antigens of Vibrio outer membrane protein K (OmpK) and flagellin B subunit (FlaB). These antigen genes are highly conserved among Vibrio species. Olive flounder (7.1 ± 0.8 g and 140 ± 10 g) were fed the vaccine adsorbed to a regular feed (1 × 107 CFU/g) for one week with a 1-week interval, repeating three times (a triple boost). The vaccinated fish increased the significant levels of antigen-specific antibodies, T cell numbers (CD4-1, CD4-2, and CD8α), cytokine production (T-bet and IFN-γ), and innate immune responses (TLR5M, IL-1β, and IL-12p40). Also, the survival rates of adult and juvenile fish fed the vaccine were significantly elevated when challenged with V. anguillarum, V. alginolyticus, and V. harveyi. In addition, weight gain rate and feed conversion ratio were improved in vaccinated fish. The feed vaccine protected multiple Vibrio pathogens, a universal vaccine effect, by activating innate and adaptive immune responses. This oral vaccine may be developed as an anti-Vibrio vaccine to protect against a broad spectrum of Vibrio pathogens. •Lactococcus lactis BFE920 was engineered to express the fusion protein that are highly conserved among Vibrio pathogens.•LAB vaccine fed olive flounder were pretected from multiple Vibrio pathogens: a universal vaccine effect.•The vaccine-fed fish increased both innate immunity and adaptive immunity.•The vaccinated olive flounder improved the weight gain rate and feed conversion ratio.
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2021.05.007