Critical Tools in Tableting Research: Using Compaction Simulator and Quality by Design (QbD) to Evaluate Lubricants’ Effect in Direct Compressible Formulation

As commonly known, the product development stage is quite complex, requires intensive knowledge, and is time-consuming. The selection of the excipients with the proper functionality and their corresponding levels is critical to drug product performance. The objective of this study was to apply quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2021-05, Vol.22 (4), p.151-151, Article 151
Hauptverfasser: Jiwa, Nailla, Ozalp, Yildiz, Yegen, Gizem, Aksu, Buket
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As commonly known, the product development stage is quite complex, requires intensive knowledge, and is time-consuming. The selection of the excipients with the proper functionality and their corresponding levels is critical to drug product performance. The objective of this study was to apply quality by design (QbD) principles for formulation development and to define the desired product quality profile (QTPP) and critical quality attributes (CQA) of a product. QbD is a risk- and science-based holistic approach for upgraded pharmaceutical development. In this study, Ibuprofen DC 85W was used as a model drug, Cellactose® 80 along with MicroceLac® 100 as a filler, and magnesium stearate, stearic acid, and sodium stearyl fumarate as lubricants. By applying different formulation parameters to the filler and lubricants, the QbD approach furthers the understanding of the effect of critical formulation and process parameters on CQAs and the contribution to the overall quality of the drug product. An experimental design study was conducted to determine the changes of the obtained outputs of the formulations, which were evaluated using the Modde Pro 12.1 statistical computer program that enables optimization by modeling complex relationships. The results of the optimum formulation revealed that MicroceLac® 100 was the superior filler, while magnesium stearate at 1% was the optimum lubricant. A design space that indicates the safety operation limits for the process and formulation variables was also created. This study enriches the understanding of the effect of excipients in formulation and assists in enhancing formulation design using experimental design and mathematical modeling methods in the frame of the QbD approach.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-021-02004-y