Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template

Peptide self-assembly is gathering much attention due to the precise control it provides for the arrangement of functional moieties for the fabrication of advanced functional materials. It is desirable to use a physical, chemical, or biological trigger that can control the self-assembly process. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2021-06, Vol.22 (6), p.2393-2407
Hauptverfasser: Kaur, Harsimran, Roy, Sangita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peptide self-assembly is gathering much attention due to the precise control it provides for the arrangement of functional moieties for the fabrication of advanced functional materials. It is desirable to use a physical, chemical, or biological trigger that can control the self-assembly process. In the current article, we have applied an enzyme to induce the peptide self-assembly of an aromatic peptide amphiphile, which modulates the supramolecular order in the final gel phase material. We accessed diverse peptide hydrogels from identical gelator concentrations by simply changing the enzyme concentration, which controlled the reaction kinetics and influenced the dynamics of self-assembly. Depending upon the concentration of the enzyme, a bell-shaped relationship was observed in terms of intermolecular interactions, morphology, and properties of the final gel phase material. The access of non-equilibrium structures was further demonstrated by fluorescence emission spectroscopy, circular dichroism spectroscopy, atomic force microscopy, transmission electron microscopy, and rheology. This strategy is applied to construct a charge-transfer hydrogel by doping the donor hydrogel with an acceptor moiety, which exhibits efficient energy transfer. Interestingly, such structural control at the nanoscopic level can further tune the energy-transfer efficiency by simply modulating the enzyme concentration.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.1c00187