MicroRNA-26 regulates the expression of CTGF after exposure to ionizing radiation

Radiation-induced fibrosis (RIF) is a serious complication that occurs after irradiation and which is caused by the deposition of extracellular matrix (ECM) proteins such as collagen. However, the underlying mechanisms, including the expression of the cytokines, that promote the RIF process, are not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation and environmental biophysics 2021-08, Vol.60 (3), p.411-419
Hauptverfasser: Yano, Hiroyuki, Hamanaka, Ryoji, Zhang, Juan Juan, Yano, Mami, Hida, Mariko, Matsuo, Noritaka, Yoshioka, Hidekatsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiation-induced fibrosis (RIF) is a serious complication that occurs after irradiation and which is caused by the deposition of extracellular matrix (ECM) proteins such as collagen. However, the underlying mechanisms, including the expression of the cytokines, that promote the RIF process, are not yet fully understood. MicroRNAs (miRNAs) have recently been suggested to act as post-transcriptional repressors for many genes; however, their role in the process of RIF remains to be elucidated. Our previous study showed that ionizing radiation increased the type I collagen expression through the activation of transforming growth factor (TGF)-β, while miR-29 repressed this increase. This study aimed to investigate the mechanisms by which the expression of connective tissue growth factor (CTGF), a downstream mediator of TGF-β, is controlled by miRNAs post-transcriptionally after exposure to ionizing radiation. The expression of CTGF in NIH-3T3 cells and mouse embryonic fibroblasts was increased by ionizing radiation. However, this increase was suppressed with a specific inhibitor of TGF-β receptor. Among the predictable miRNAs that target the CTGF gene, the expression of miR-26a was downregulated after exposure to ionizing radiation and this regulation was negatively mediated by TGF-β signaling. miR-26a negatively regulated the CTGF expression at the post-transcriptional level; however, ionizing radiation suppressed this negative regulation. In addition, the overexpression of miR-26a inhibited the expression of CTGF and type I collagen after irradiation. In conclusion, miR-26a modulates the expression of CTGF via TGF-β signaling in irradiated fibroblasts. The results suggest the potential application of miR-26a in the treatment of RIF.
ISSN:0301-634X
1432-2099
DOI:10.1007/s00411-021-00915-9