Indium Tin Oxide Branched Nanowire and Poly(3-hexylthiophene) Hybrid Structure for a Photorechargeable Supercapacitor

We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly­(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (19), p.22676-22683
Hauptverfasser: Dong, Wan Jae, Cho, Won Seok, Lee, Jong-Lam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly­(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive characteristics that originated from the unique porous and self-connected network structure. The hybrid structure of ITO BR/P3HT exhibited spontaneous light harvesting, energy conversion, and charge storage. As a result, photocharging/discharging of ITO BR/P3HT showed an areal capacitance of 2.44 mF/cm2 at a current density of 0.02 mA/cm2. The proof-of-concept photorechargeable device, composed of ITO BRs, ITO BR/P3HT, and Na2SO4/polyvinyl acetate gel electrolyte, generated a photovoltage as high as 0.28 V and stored charge effectively for tens of seconds. The combination of dual functions in a single hybrid material may achieve breakthrough advances.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c05241