Indium Tin Oxide Branched Nanowire and Poly(3-hexylthiophene) Hybrid Structure for a Photorechargeable Supercapacitor
We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive ch...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-05, Vol.13 (19), p.22676-22683 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive characteristics that originated from the unique porous and self-connected network structure. The hybrid structure of ITO BR/P3HT exhibited spontaneous light harvesting, energy conversion, and charge storage. As a result, photocharging/discharging of ITO BR/P3HT showed an areal capacitance of 2.44 mF/cm2 at a current density of 0.02 mA/cm2. The proof-of-concept photorechargeable device, composed of ITO BRs, ITO BR/P3HT, and Na2SO4/polyvinyl acetate gel electrolyte, generated a photovoltage as high as 0.28 V and stored charge effectively for tens of seconds. The combination of dual functions in a single hybrid material may achieve breakthrough advances. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c05241 |