Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges
Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chal...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-08, Vol.415, p.125588, Article 125588 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 125588 |
container_title | Journal of hazardous materials |
container_volume | 415 |
creator | Navakoteswara Rao, Vempuluru Ravi, Parnapalle Sathish, Marappan Vijayakumar, Manavalan Sakar, Mohan Karthik, Mani Balakumar, Subramanian Reddy, Kakarla Raghava Shetti, Nagaraj P. Aminabhavi, Tejraj M. Shankar, Muthukonda Venkatakrishnan |
description | Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
[Display omitted]
•Insights into the various types of core/shell(CS) structures and their mechanisms.•Revisiting the key challenges in metal chalcogenides(MC)-based photocatalysts.•General classification of various synthesis methods of core/shell structures.•Various parameters influencing the photocatalytic H2 production by MC-CS materials.•Exclusive focus on the photocatalytic H2 evolution applications of CS materials. |
doi_str_mv | 10.1016/j.jhazmat.2021.125588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524290261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389421005513</els_id><sourcerecordid>2524290261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-92b4d7ca6cb4bb91276f6b570630fe1aa25abf2e8f7d1a1502bb60e2a25203df3</originalsourceid><addsrcrecordid>eNqFkd1qGzEQhUVpaNy0j5Cgy150Hf3sate9KSX0J5AQCOm1GEmzXpn1ypXkgPMCee3KtZvbXAlG35kzM4eQc87mnHF1uZqvBnhaQ54LJvici6bpujdkxrtWVlJK9ZbMmGR1JbtFfUrep7RijPG2qd-RUynbRhXdjDzfYoaR2gFGG5Y4eYeVgYSO2hDxMg04jnQzhBwsFHCXcqJ9iDSFESIddi7uVXQTg9va7MP0hd6jxSlTcI8wWUyf958bjNljojA5mtEOUxjDcvfPdsRpiekDOelhTPjx-J6R3z--P1z9qm7ufl5ffbupbK3qXC2EqV1rQVlTG7PgolW9Mk3LlGQ9cgDRgOkFdn3rOPCGCWMUQ1HqgknXyzPy6dC3DPVniynrtU-2LAkThm3ShavFggnFC9ocUBtDShF7vYl-DXGnOdP7DPRKHzPQ-wz0IYOiuzhabM0a3Yvq_9EL8PUAYFn00WPUyXost3I-os3aBf-KxV-PDZ5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524290261</pqid></control><display><type>article</type><title>Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges</title><source>Elsevier ScienceDirect Journals</source><creator>Navakoteswara Rao, Vempuluru ; Ravi, Parnapalle ; Sathish, Marappan ; Vijayakumar, Manavalan ; Sakar, Mohan ; Karthik, Mani ; Balakumar, Subramanian ; Reddy, Kakarla Raghava ; Shetti, Nagaraj P. ; Aminabhavi, Tejraj M. ; Shankar, Muthukonda Venkatakrishnan</creator><creatorcontrib>Navakoteswara Rao, Vempuluru ; Ravi, Parnapalle ; Sathish, Marappan ; Vijayakumar, Manavalan ; Sakar, Mohan ; Karthik, Mani ; Balakumar, Subramanian ; Reddy, Kakarla Raghava ; Shetti, Nagaraj P. ; Aminabhavi, Tejraj M. ; Shankar, Muthukonda Venkatakrishnan</creatorcontrib><description>Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
[Display omitted]
•Insights into the various types of core/shell(CS) structures and their mechanisms.•Revisiting the key challenges in metal chalcogenides(MC)-based photocatalysts.•General classification of various synthesis methods of core/shell structures.•Various parameters influencing the photocatalytic H2 production by MC-CS materials.•Exclusive focus on the photocatalytic H2 evolution applications of CS materials.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2021.125588</identifier><identifier>PMID: 33756202</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Band gap ; carbon ; Core-shell nanostructures ; energy ; hydrogen fuels ; hydrogen production ; kerosene ; Metal-chalcogenides ; nanocomposites ; petroleum ; photocatalysis ; Photocatalysts ; Quantum dots ; S-Scheme heterojunction ; solar energy ; Stability ; zero emissions</subject><ispartof>Journal of hazardous materials, 2021-08, Vol.415, p.125588, Article 125588</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-92b4d7ca6cb4bb91276f6b570630fe1aa25abf2e8f7d1a1502bb60e2a25203df3</citedby><cites>FETCH-LOGICAL-c464t-92b4d7ca6cb4bb91276f6b570630fe1aa25abf2e8f7d1a1502bb60e2a25203df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389421005513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33756202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Vijayakumar, Manavalan</creatorcontrib><creatorcontrib>Sakar, Mohan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Balakumar, Subramanian</creatorcontrib><creatorcontrib>Reddy, Kakarla Raghava</creatorcontrib><creatorcontrib>Shetti, Nagaraj P.</creatorcontrib><creatorcontrib>Aminabhavi, Tejraj M.</creatorcontrib><creatorcontrib>Shankar, Muthukonda Venkatakrishnan</creatorcontrib><title>Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
[Display omitted]
•Insights into the various types of core/shell(CS) structures and their mechanisms.•Revisiting the key challenges in metal chalcogenides(MC)-based photocatalysts.•General classification of various synthesis methods of core/shell structures.•Various parameters influencing the photocatalytic H2 production by MC-CS materials.•Exclusive focus on the photocatalytic H2 evolution applications of CS materials.</description><subject>Band gap</subject><subject>carbon</subject><subject>Core-shell nanostructures</subject><subject>energy</subject><subject>hydrogen fuels</subject><subject>hydrogen production</subject><subject>kerosene</subject><subject>Metal-chalcogenides</subject><subject>nanocomposites</subject><subject>petroleum</subject><subject>photocatalysis</subject><subject>Photocatalysts</subject><subject>Quantum dots</subject><subject>S-Scheme heterojunction</subject><subject>solar energy</subject><subject>Stability</subject><subject>zero emissions</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkd1qGzEQhUVpaNy0j5Cgy150Hf3sate9KSX0J5AQCOm1GEmzXpn1ypXkgPMCee3KtZvbXAlG35kzM4eQc87mnHF1uZqvBnhaQ54LJvici6bpujdkxrtWVlJK9ZbMmGR1JbtFfUrep7RijPG2qd-RUynbRhXdjDzfYoaR2gFGG5Y4eYeVgYSO2hDxMg04jnQzhBwsFHCXcqJ9iDSFESIddi7uVXQTg9va7MP0hd6jxSlTcI8wWUyf958bjNljojA5mtEOUxjDcvfPdsRpiekDOelhTPjx-J6R3z--P1z9qm7ufl5ffbupbK3qXC2EqV1rQVlTG7PgolW9Mk3LlGQ9cgDRgOkFdn3rOPCGCWMUQ1HqgknXyzPy6dC3DPVniynrtU-2LAkThm3ShavFggnFC9ocUBtDShF7vYl-DXGnOdP7DPRKHzPQ-wz0IYOiuzhabM0a3Yvq_9EL8PUAYFn00WPUyXost3I-os3aBf-KxV-PDZ5d</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Navakoteswara Rao, Vempuluru</creator><creator>Ravi, Parnapalle</creator><creator>Sathish, Marappan</creator><creator>Vijayakumar, Manavalan</creator><creator>Sakar, Mohan</creator><creator>Karthik, Mani</creator><creator>Balakumar, Subramanian</creator><creator>Reddy, Kakarla Raghava</creator><creator>Shetti, Nagaraj P.</creator><creator>Aminabhavi, Tejraj M.</creator><creator>Shankar, Muthukonda Venkatakrishnan</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20210805</creationdate><title>Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges</title><author>Navakoteswara Rao, Vempuluru ; Ravi, Parnapalle ; Sathish, Marappan ; Vijayakumar, Manavalan ; Sakar, Mohan ; Karthik, Mani ; Balakumar, Subramanian ; Reddy, Kakarla Raghava ; Shetti, Nagaraj P. ; Aminabhavi, Tejraj M. ; Shankar, Muthukonda Venkatakrishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-92b4d7ca6cb4bb91276f6b570630fe1aa25abf2e8f7d1a1502bb60e2a25203df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Band gap</topic><topic>carbon</topic><topic>Core-shell nanostructures</topic><topic>energy</topic><topic>hydrogen fuels</topic><topic>hydrogen production</topic><topic>kerosene</topic><topic>Metal-chalcogenides</topic><topic>nanocomposites</topic><topic>petroleum</topic><topic>photocatalysis</topic><topic>Photocatalysts</topic><topic>Quantum dots</topic><topic>S-Scheme heterojunction</topic><topic>solar energy</topic><topic>Stability</topic><topic>zero emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Vijayakumar, Manavalan</creatorcontrib><creatorcontrib>Sakar, Mohan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Balakumar, Subramanian</creatorcontrib><creatorcontrib>Reddy, Kakarla Raghava</creatorcontrib><creatorcontrib>Shetti, Nagaraj P.</creatorcontrib><creatorcontrib>Aminabhavi, Tejraj M.</creatorcontrib><creatorcontrib>Shankar, Muthukonda Venkatakrishnan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navakoteswara Rao, Vempuluru</au><au>Ravi, Parnapalle</au><au>Sathish, Marappan</au><au>Vijayakumar, Manavalan</au><au>Sakar, Mohan</au><au>Karthik, Mani</au><au>Balakumar, Subramanian</au><au>Reddy, Kakarla Raghava</au><au>Shetti, Nagaraj P.</au><au>Aminabhavi, Tejraj M.</au><au>Shankar, Muthukonda Venkatakrishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2021-08-05</date><risdate>2021</risdate><volume>415</volume><spage>125588</spage><pages>125588-</pages><artnum>125588</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
[Display omitted]
•Insights into the various types of core/shell(CS) structures and their mechanisms.•Revisiting the key challenges in metal chalcogenides(MC)-based photocatalysts.•General classification of various synthesis methods of core/shell structures.•Various parameters influencing the photocatalytic H2 production by MC-CS materials.•Exclusive focus on the photocatalytic H2 evolution applications of CS materials.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33756202</pmid><doi>10.1016/j.jhazmat.2021.125588</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2021-08, Vol.415, p.125588, Article 125588 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_2524290261 |
source | Elsevier ScienceDirect Journals |
subjects | Band gap carbon Core-shell nanostructures energy hydrogen fuels hydrogen production kerosene Metal-chalcogenides nanocomposites petroleum photocatalysis Photocatalysts Quantum dots S-Scheme heterojunction solar energy Stability zero emissions |
title | Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20chalcogenide-based%20core/shell%20photocatalysts%20for%20solar%20hydrogen%20production:%20Recent%20advances,%20properties%20and%20technology%20challenges&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Navakoteswara%20Rao,%20Vempuluru&rft.date=2021-08-05&rft.volume=415&rft.spage=125588&rft.pages=125588-&rft.artnum=125588&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2021.125588&rft_dat=%3Cproquest_cross%3E2524290261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524290261&rft_id=info:pmid/33756202&rft_els_id=S0304389421005513&rfr_iscdi=true |