Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges

Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-08, Vol.415, p.125588, Article 125588
Hauptverfasser: Navakoteswara Rao, Vempuluru, Ravi, Parnapalle, Sathish, Marappan, Vijayakumar, Manavalan, Sakar, Mohan, Karthik, Mani, Balakumar, Subramanian, Reddy, Kakarla Raghava, Shetti, Nagaraj P., Aminabhavi, Tejraj M., Shankar, Muthukonda Venkatakrishnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production. [Display omitted] •Insights into the various types of core/shell(CS) structures and their mechanisms.•Revisiting the key challenges in metal chalcogenides(MC)-based photocatalysts.•General classification of various synthesis methods of core/shell structures.•Various parameters influencing the photocatalytic H2 production by MC-CS materials.•Exclusive focus on the photocatalytic H2 evolution applications of CS materials.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.125588