3D printing improves strain gauge sensor manufacturing
After more than 80 years of use as a sensing element for deformation measurements, the strain gauge has become a matter of course. However, the conventional adhesive-sensor strain gauge is facing new challenges as the industry increasingly demands that the measured values and their digital processin...
Gespeichert in:
Veröffentlicht in: | Laser focus world 2021-04, Vol.57 (4), p.25 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After more than 80 years of use as a sensing element for deformation measurements, the strain gauge has become a matter of course. However, the conventional adhesive-sensor strain gauge is facing new challenges as the industry increasingly demands that the measured values and their digital processing can be reproduced in an automatable process to a far-higher degree. To meet these demands and open up new applications, additive manufacturing technology can be applied to allow for more flexible design, automation, and reproducibility in attaching strain gauges. To appreciate the benefits of additively manufactured strain gauges, a brief review is useful. After all, many 3D components can already be printed from different materials. The Fraunhofer Institute for Laser Technology (Fraunhofer ILT) and i4M Technologies (both in Aachen, Germany) have addressed this question and developed a prototype, which is described below. In conventional strain gauges, the resistive measurement grid is usually laminated between a carrier and cover film. |
---|---|
ISSN: | 1043-8092 |