Radiation exposure associated with percutaneous fluoroscopically guided lag screw fixation for sacroiliac luxation in dogs

Objective To determine radiation exposure to surgical personnel and to evaluate the accuracy of a modified percutaneous lag screw fixation technique for sacroiliac luxation (SIL) under fluoroscopic guidance in dogs. Study design Cadaveric experimental study. Sample population Seventeen beagle cadave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary surgery 2021-07, Vol.50 (5), p.1065-1075
Hauptverfasser: Naiman, Jaron H., Zellner, Eric M., Petrovsky, Brian L., Riegel, Thomas O., Schmitt, Elizabeth M., Yuan, Lingnan, Mochel, Jonathan P., Kraus, Karl H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To determine radiation exposure to surgical personnel and to evaluate the accuracy of a modified percutaneous lag screw fixation technique for sacroiliac luxation (SIL) under fluoroscopic guidance in dogs. Study design Cadaveric experimental study. Sample population Seventeen beagle cadavers with iatrogenic SIL. Methods Seventeen beagles with iatrogenic SIL underwent reduction and stabilization with 3.5‐mm screws. Hypodermic needles (14 gauge) and fluoroscopy were used to orient two Kirschner wires for temporary stabilization and to guide drilling of glide and pilot holes using cannulated drill bits. Duration of surgery and radiation exposure were recorded. Postoperative computed tomographic evaluation of screw position and angulation was performed. Results Average time for fixation was 15.85 minutes (range, 6.37–33.5). Cumulative radiation doses of 0.4 mrem for the dominant arm of the assistant and 0 mrem for the primary surgeon were recorded. The mean dorsoventral and craniocaudal screw angles were 0.68° ± 3.4° (range − 5.4° to 9.5°) and 1.9° ± 3.2° (range − 4.3° to 9.1°), respectively. Sixteen of the 17 dogs had 100% sacral screw purchase, with the remaining case achieving 93.4% purchase. Conclusion Fluoroscopy‐assisted percutaneous placement of 3.5‐mm cortical screws in lag fashion performed with 14‐gauge needles in conjunction with Kirschner wires and cannulated drill bits yielded repeatable accurate screw placement with low levels of ionizing radiation exposure to the surgical team. Clinical significance The described technique may be a viable method for minimally invasive osteosynthesis fixation of SIL with low levels of radiation exposure to the surgical team. These results provide evidence to support further evaluation of radiation exposure in clinical cases and can aid in study design and sample size determination.
ISSN:0161-3499
1532-950X
DOI:10.1111/vsu.13613