Characterization of the mechanical properties of human parietal bones preserved in modified larssen solution, formalin and as fresh frozen
Purpose Although the fresh frozen (FF) cadaver is preferred for surgical applications, it is limited due to short usage time, unsuitable for reuse and the risk of infection. Due to its limited use, FF cadavers, which are covered by import in countries with insufficient body donation cause low-cost e...
Gespeichert in:
Veröffentlicht in: | Surgical and radiologic anatomy (English ed.) 2021-12, Vol.43 (12), p.1933-1943 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Although the fresh frozen (FF) cadaver is preferred for surgical applications, it is limited due to short usage time, unsuitable for reuse and the risk of infection. Due to its limited use, FF cadavers, which are covered by import in countries with insufficient body donation cause low-cost effectiveness. With the increase of real human tissue specimen necessities for surgical training, long-term preservation of the cadavers is crucial due to changes in mechanical properties. Therefore, studies on embalming solutions have increased in recent years.
Methods
We quantify the biomechanical properties of human parietal bones preserved via modified larssen solution (MLS) and compare the results with the specimens preserved as FF and fixed with 10% formalin-based solution (F10). The rectangular samples of 24 parietal bones of male individuals were resected from MLS-embalmed, F10-embalmed and FF cadavers to form three groups each containing eight samples. These specimens were tested longitudinally to identify mechanical properties.
Results
The tensile test results showed that there is not a significant difference between the groups in terms of stiffness, elastic modulus, strain at ultimate stress, failure strain and effective plastic strain. However, the yield stress, ultimate stress, yield strain, failure stress and total energy and post-yield properties are significantly lower in F10 than MLS and FF groups.
Conclusion
It is observed that the mechanical properties of MLS preserved and FF parietal bones have almost similar properties. Thus, it can be concluded that MLS is a suitable fixative solution for bone studies and bone-related surgical anatomy training applications. |
---|---|
ISSN: | 0930-1038 1279-8517 |
DOI: | 10.1007/s00276-021-02762-1 |