Antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis

The antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis were investigated. The chemical composition of the oil was characterized by gas chromatography–mass spectrometry. Stock solution of the essential oil of clove was prepared i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food science and technology international 2022-04, Vol.28 (4), p.331-339
Hauptverfasser: Somrani, Mariem, Debbabi, Hajer, Palop, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis were investigated. The chemical composition of the oil was characterized by gas chromatography–mass spectrometry. Stock solution of the essential oil of clove was prepared in 95% (v/v) ethanol (EOC). The antibacterial assays were performed by disk diffusion assay and minimal inhibitory concentration (MIC). The biomass of adhered cells and preformed biofilms after incubation with different concentrations of EOC was assessed by crystal violet. Eugenol was the major bioactive compound of clove essential oil, accounting for 78.85% of the total composition. The MIC values for L. monocytogenes and S. Enteritidis were 0.05 mg/ml and 0.1 mg/ml, respectively. The initial cell adhesion at MIC was inhibited by 61.8% for L. monocytogenes and 49.8% for S. Enteritidis. However, the effect of EOC was less marked on biofilm eradication than on cell adhesion. At MIC and within 1 hour of incubation with the EOC, the preformed biofilms were reduced by 30.2% and 20.3% for L. monocytogenes and S. Enteritidis, respectively. These results suggest that sanitizers based on clove essential oil could be a potential strategy to control biofilms in food-related environments.
ISSN:1082-0132
1532-1738
DOI:10.1177/10820132211013273