λ/12 Super Resolution Achieved in Maskless Optical Projection Nanolithography for Efficient Cross-Scale Patterning

The emerging demand for device miniaturization and integration prompts the patterning technique of micronano-cross-scale structures as an urgent desire. Lithography, as a sufficient patterning technique, has been playing an important role in achieving functional micronanoscale structures for decades...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-05, Vol.21 (9), p.3915-3921
Hauptverfasser: Liu, Yu-Huan, Zhao, Yuan-Yuan, Jin, Feng, Dong, Xian-Zi, Zheng, Mei-Ling, Zhao, Zhen-Sheng, Duan, Xuan-Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emerging demand for device miniaturization and integration prompts the patterning technique of micronano-cross-scale structures as an urgent desire. Lithography, as a sufficient patterning technique, has been playing an important role in achieving functional micronanoscale structures for decades. As a promising alternative, we have proposed and demonstrated the maskless optical projection nanolithography (MLOP-NL) technique for efficient cross-scale patterning. A minimum feature size of 32 nm, which is λ/12 super resolution breaking the optical diffraction limit, has been achieved by a single exposure. Furthermore, multiscale two-dimensional micronano-hybrid structures with the size over hundreds of micrometers and the precision at tens of nanometers have been fabricated by simply controlling the exposure conditions. The proposed MLOP-NL technique provides a powerful tool for achieving cross-scale patterning with both large-scale and precise configuration with high efficiency, which can be potentially used in the fabrication of multiscale integrated microsystems.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c00559