Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths
Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approa...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-04, Vol.126 (15), p.153603-153603, Article 153603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153603 |
---|---|
container_issue | 15 |
container_start_page | 153603 |
container_title | Physical review letters |
container_volume | 126 |
creator | Ashida, Yuto İmamoğlu, Ataç Demler, Eugene |
description | Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter or photon Hilbert space is increasingly well justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed. |
doi_str_mv | 10.1103/PhysRevLett.126.153603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520888498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520888498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-73cb4abc67edb38a3593d7841a013dc91b3f9961e17ec958846c5189010454a33</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqXwC1UkNmxSPHGc2Msq4iWCeK8tx3HbVHkU26mUv8fQghCr2Zx7Z-YgNAU8A8Dk8mk12Be9zbVzM4iSGVCSYHKAxoBTHqYA8SEaY0wg5BinI3Ri7Rpj7FF2jEaE8IhHwMboPpPbyg3Bcy9b1zfBVa2VM105tLKplA2kC-amqJyRZgjyarly4YN0Tpsg6_pNXbXL4NUZ3S7dyp6io4WsrT7bzwl6v756y27D_PHmLpvnoYopc2FKVBHLQiWpLgvCJKGclCmLQWIgpeJQkAXnCWhIteKUsThRFBjHgGMaS0Im6GLXuzHdR6-tE01lla5r2equtyKiEWY-xplHz_-h6643rb_OU-B3UvZNJTtKmc5aoxdiY6rGfywAiy_d4o9u4R2KnW4fnO7r-6LR5W_sxy_5BE1afX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518415898</pqid></control><display><type>article</type><title>Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ashida, Yuto ; İmamoğlu, Ataç ; Demler, Eugene</creator><creatorcontrib>Ashida, Yuto ; İmamoğlu, Ataç ; Demler, Eugene</creatorcontrib><description>Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter or photon Hilbert space is increasingly well justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.153603</identifier><identifier>PMID: 33929218</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Coupled modes ; Coupling ; Decoupling ; Electric dipoles ; Hamiltonian functions ; Hilbert space ; Quantum electrodynamics</subject><ispartof>Physical review letters, 2021-04, Vol.126 (15), p.153603-153603, Article 153603</ispartof><rights>Copyright American Physical Society Apr 16, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-73cb4abc67edb38a3593d7841a013dc91b3f9961e17ec958846c5189010454a33</citedby><cites>FETCH-LOGICAL-c458t-73cb4abc67edb38a3593d7841a013dc91b3f9961e17ec958846c5189010454a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2867,2868,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33929218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashida, Yuto</creatorcontrib><creatorcontrib>İmamoğlu, Ataç</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><title>Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter or photon Hilbert space is increasingly well justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed.</description><subject>Coupled modes</subject><subject>Coupling</subject><subject>Decoupling</subject><subject>Electric dipoles</subject><subject>Hamiltonian functions</subject><subject>Hilbert space</subject><subject>Quantum electrodynamics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqXwC1UkNmxSPHGc2Msq4iWCeK8tx3HbVHkU26mUv8fQghCr2Zx7Z-YgNAU8A8Dk8mk12Be9zbVzM4iSGVCSYHKAxoBTHqYA8SEaY0wg5BinI3Ri7Rpj7FF2jEaE8IhHwMboPpPbyg3Bcy9b1zfBVa2VM105tLKplA2kC-amqJyRZgjyarly4YN0Tpsg6_pNXbXL4NUZ3S7dyp6io4WsrT7bzwl6v756y27D_PHmLpvnoYopc2FKVBHLQiWpLgvCJKGclCmLQWIgpeJQkAXnCWhIteKUsThRFBjHgGMaS0Im6GLXuzHdR6-tE01lla5r2equtyKiEWY-xplHz_-h6643rb_OU-B3UvZNJTtKmc5aoxdiY6rGfywAiy_d4o9u4R2KnW4fnO7r-6LR5W_sxy_5BE1afX0</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Ashida, Yuto</creator><creator>İmamoğlu, Ataç</creator><creator>Demler, Eugene</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210416</creationdate><title>Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths</title><author>Ashida, Yuto ; İmamoğlu, Ataç ; Demler, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-73cb4abc67edb38a3593d7841a013dc91b3f9961e17ec958846c5189010454a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coupled modes</topic><topic>Coupling</topic><topic>Decoupling</topic><topic>Electric dipoles</topic><topic>Hamiltonian functions</topic><topic>Hilbert space</topic><topic>Quantum electrodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashida, Yuto</creatorcontrib><creatorcontrib>İmamoğlu, Ataç</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashida, Yuto</au><au>İmamoğlu, Ataç</au><au>Demler, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>126</volume><issue>15</issue><spage>153603</spage><epage>153603</epage><pages>153603-153603</pages><artnum>153603</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter or photon Hilbert space is increasingly well justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33929218</pmid><doi>10.1103/PhysRevLett.126.153603</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-04, Vol.126 (15), p.153603-153603, Article 153603 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2520888498 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Coupled modes Coupling Decoupling Electric dipoles Hamiltonian functions Hilbert space Quantum electrodynamics |
title | Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20Quantum%20Electrodynamics%20at%20Arbitrary%20Light-Matter%20Coupling%20Strengths&rft.jtitle=Physical%20review%20letters&rft.au=Ashida,%20Yuto&rft.date=2021-04-16&rft.volume=126&rft.issue=15&rft.spage=153603&rft.epage=153603&rft.pages=153603-153603&rft.artnum=153603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.153603&rft_dat=%3Cproquest_cross%3E2520888498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518415898&rft_id=info:pmid/33929218&rfr_iscdi=true |