Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths
Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approa...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-04, Vol.126 (15), p.153603-153603, Article 153603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter or photon Hilbert space is increasingly well justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.153603 |