TiO2-sensitized double-shell ZnCdS hollow nanospheres for photoelectrochemical immunoassay of carcinoembryonic antigen coupled with hybridization chain reaction-dependent Cu2+ quenching

A novel photoelectrochemical immunosensor was constructed to monitor carcinoembryonic antigen (CEA) based on hybridization chain reaction (HCR)-mediated in situ generation of copper nanoparticles (Cu NPs) and subsequent Cu2+-dependent quenching reaction, in which titanium dioxide nanoparticles-sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2021-08, Vol.185, p.113251-113251, Article 113251
Hauptverfasser: Zang, Yang, Cao, Rong, Zhang, Chenyang, Xu, Qin, Yang, Zhanjun, Xue, Huaiguo, Shen, Yizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel photoelectrochemical immunosensor was constructed to monitor carcinoembryonic antigen (CEA) based on hybridization chain reaction (HCR)-mediated in situ generation of copper nanoparticles (Cu NPs) and subsequent Cu2+-dependent quenching reaction, in which titanium dioxide nanoparticles-sensitized double-shell zinc cadmium sulfide hollow nanospheres (TiO2/DS-ZnCdS)-modified ITO electrode and anti-CEA antibody-modified 96-well plate served as biological recognition and signal detection platforms, respectively. The synergistic effect of TiO2 NPs and DS-ZnCdS hollow nanospheres contributed to the improvement of photoelectric conversion efficiency, and HCR-mediated signal cascade benefited the enhancement of detection sensitivity. In the presence of CEA, biotin-labelled anti-CEA antibodies were immobilized onto anti-CEA antibody-modified 96-well plate, and triggered HCR process to form long double stranded DNA, which could adsorb a large number of Cu2+ ions and then in situ form Cu NPs on double stranded DNA template by a facile reduction reaction. After acid treatment, the dissolved Cu2+ ions could significantly reduce the photocurrent response due to the generation of CuxS. Under optimal conditions, the immunosensor exhibited a desirable liner range of 1 pg mL−1 – 50 ng mL−1 and a low detection limit of 0.1 pg mL−1, as well as excellent selectivity and stability. Meanwhile, the recoveries of human serum sample analysis ranged from 96.8% to 103.6%, and the relative standard deviation was less than 7.40%, showing a good feasibility in early clinical diagnosis. •A novel photoelectrochemical immunosensor based on TiO2-sensitized DS-ZnCdS HNs was constructed for CEA detection.•HCR-mediated cascade process and Cu2+-based quenching reaction were integrated.•The photocurrent response was enhanced by TiO2/DS-ZnCdS heterostructure.•The excellent performances of designed immunosensor benefited to its potential application in early clinical diagnosis.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2021.113251