Experimental Analysis of Pressure and Flow Alterations During and After Insertion of a Multilayer Flow Modulator into an AAA Model with Incorporated Branch

Purpose The multilayer flow modulator (MFM) device has been used for the treatment of abdominal aortic aneurysm (AAA) for over a decade. Although several clinical studies have been published, criticism and concern over the device efficacy remain, as no quantitative analysis that describes its mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular and interventional radiology 2021-08, Vol.44 (8), p.1251-1259
Hauptverfasser: Tupin, Simon, Takase, Kei, Ohta, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The multilayer flow modulator (MFM) device has been used for the treatment of abdominal aortic aneurysm (AAA) for over a decade. Although several clinical studies have been published, criticism and concern over the device efficacy remain, as no quantitative analysis that describes its mechanism has been performed yet. The aim of this study was to experimentally evaluate the effect of MFM device deployment on aneurysmal pressure and branch perfusion. Materials and Methods An experimental flow and pressure monitoring system was developed to analyze the MFM deployment procedure performed by a qualified radiologist in AAA geometries with and without side branch. Particle image velocimetry experiments were then conducted on models with and without MFM device to evaluate and compare flow patterns and local flow velocity and vorticity in the aneurysm. Results The experiments revealed no significant change in pressure and flow rate during and after deployment of the MFM device. The flow rate of the incorporated branch was fully preserved. On both models, the aneurysmal flow velocity was significantly reduced. In addition, the device modified local flow patterns, reducing vorticity and better feeding the incorporated branch. Conclusion This experimental study provides the basis for a better understanding of the mechanism of the MFM device, which allows intra-aneurysmal flow to decrease while preserving incorporated branch flow and reducing the risk of type II endoleak. The experimental system developed for this study was effective in simulating an endovascular procedure and studying the safety and effectiveness of endovascular devices.
ISSN:0174-1551
1432-086X
DOI:10.1007/s00270-021-02835-z