Gynura japonica: A new host of Apple stem grooving virus and Chrysanthemum virus B in China

Gynura japonica (Thunb.) Juel [Asteraceae; syn: G. segetum (Lour.) Merr] is an important perennial medicinal herb used in China for topical treatment of trauma injuries (Lin et al. 2003). It grows naturally in the southern provinces of China and is also sometimes cultivated. During 2018-2020, wild G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2021-11, Vol.105 (11), p.3770
Hauptverfasser: Lai, Yuchao, Wu, Xinyang, Lv, Lanqing, Weng, Jiajia, Han, Kelei, Chen, Ziqiang, Chen, Jianping, Yan, Fei, Zheng, Hongying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gynura japonica (Thunb.) Juel [Asteraceae; syn: G. segetum (Lour.) Merr] is an important perennial medicinal herb used in China for topical treatment of trauma injuries (Lin et al. 2003). It grows naturally in the southern provinces of China and is also sometimes cultivated. During 2018-2020, wild G. japonica plants exhibiting chlorotic spots and mosaic symptoms were observed in Zhejiang province, China. To identify the possible causal agents of the disease, a single symptomatic leaf sample was collected in August 2019 and sent to Zhejiang Academy of Agricultural Sciences (Hangzhou, China) for next generation sequencing (NGS). Total RNAs extracted with TRIzol (Invitrogen, Carlsbad, USA) were subjected to high throughput sequencing on the Illumina NovaSeq 6000 platform with PE150bp and data analysis was performed by CLC Genomic Workbench 11 with default parameters (QIAGEN, Hilden, Germany). A total of 37,314,080 paired-end reads were obtained, and 11,785 contigs (961 to 10,964 bp) were generated and compared with sequences in GenBank using BLASTn or BLASTx. Of the total of 12 viral-related contigs obtained, one with a length of 6,442 nt mapped to the genomic RNA of ASGV (MN495979), seven contigs with lengths ranging from 1,034 to 2,901 nt mapped to Chrysanthemum virus B (CVB), and four mapped to broad bean wilt virus 2 (BBWV2), a virus which is known to infect G. procumbens (Kwak et al. 2017). To further confirm the presence of ASGV and CVB, primers were designed and the complete nucleotide sequences of both viruses were amplified from the original NGS sample using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) according to the manufacturer's instructions (Tiosbio, Beijing, China). BLASTn analysis revealed that the complete 6,451 nt sequence of ASGV (GenBank accession No. MW259059) shared the highest identity (81.2%) with a Chinese isolate of ASGV from citrus (MN495979). The two isolates grouped with another Chinese isolate (from pear) in phylogenetic analysis. The predicted coat protein of the virus had the highest nt identity of 93.7% (96.2% amino acid sequence identity) with that of the Chinese ASGV isolate XY from apple (KX686100). The complete genomes of two distinct molecular variants of CVB (both 8,987 nt in length) were also obtained from this sample (GenBank accession Nos. MW269552, MW269553). They shared 86.8% nt identity with each other and had 81.1% and 82.1% identity to the only known comple
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-11-20-2512-PDN