Regression analysis of current status data with latent variables

Current status data occur in many fields including demographical, epidemiological, financial, medical, and sociological studies. We consider the regression analysis of current status data with latent variables. The proposed model consists of a factor analytic model for characterizing latent variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lifetime data analysis 2021-07, Vol.27 (3), p.413-436
Hauptverfasser: Wang, Chunjie, Zhao, Bo, Luo, Linlin, Song, Xinyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current status data occur in many fields including demographical, epidemiological, financial, medical, and sociological studies. We consider the regression analysis of current status data with latent variables. The proposed model consists of a factor analytic model for characterizing latent variables through their multiple surrogates and an additive hazard model for examining potential covariate effects on the hazards of interest in the presence of current status data. We develop a borrow-strength estimation procedure that incorporates the expectation–maximization algorithm and correlated estimating equations. The consistency and asymptotic normality of the proposed estimators are established. A simulation study is conducted to evaluate the finite sample performance of the proposed method. A real-life study on the chronic kidney disease of type 2 diabetic patients is presented.
ISSN:1380-7870
1572-9249
DOI:10.1007/s10985-021-09521-9