Lower extremity joint kinematics of a simulated lateral ankle sprain after drop landings in participants with chronic ankle instability

This study examined lower extremity joint kinematics in individuals with chronic ankle instability (CAI) and controls during unanticipated and anticipated single-leg drop landings onto a laterally inclined platform. Physically active adults with CAI 15 (n = 15) and controls (n = 15) performed an una...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports biomechanics 2022-04, Vol.21 (4), p.428-446
Hauptverfasser: Simpson, Jeffrey D., Koldenhoven, Rachel M., Wilson, Samuel J., Stewart, Ethan M., Turner, Alana J., Chander, Harish, Knight, Adam C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined lower extremity joint kinematics in individuals with chronic ankle instability (CAI) and controls during unanticipated and anticipated single-leg drop landings onto a laterally inclined platform. Physically active adults with CAI 15 (n = 15) and controls (n = 15) performed an unanticipated and anticipated 30 cm single-leg drop landing onto a 20° laterally inclined platform. Three-dimensional ankle, knee and hip-joint kinematics were recorded 200 ms pre- to 200 post-landing and analysed with a 2 (group) × 2 (landing condition) SPM ANOVA (p < 0.05). Results revealed individuals with CAI displayed significantly greater ankle internal rotation post-landing across both landing conditions. Anticipated landings elicited significantly greater pre-landing ankle inversion and external rotation, knee abduction and hip adduction. Additionally, significantly less ankle inversion, knee and hip flexion, and knee adduction and hip abduction were present during post-landing of the anticipated landing. Greater ankle internal rotation during landing may contribute to the ankle 'giving way' in individuals with CAI. However, preparatory and reactive proximal-joint kinematics were similar in both groups during landing. This highlights the possible role of the knee and hip joints in assisting with ankle-joint stability during anticipated inversion perturbations.
ISSN:1476-3141
1752-6116
DOI:10.1080/14763141.2021.1908414