Additive polynomial preconditioners for parallel computers
We present a polynomial preconditioner that can be used with the conjugate gradient method to solve symmetric and positive definite systems of linear equations. Each step of the preconditioning is achieved by simultaneously taking an iteration of the SOR method and an iteration of the reverse SOR me...
Gespeichert in:
Veröffentlicht in: | Parallel computing 1989, Vol.9 (3), p.333-345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a polynomial preconditioner that can be used with the conjugate gradient method to solve symmetric and positive definite systems of linear equations. Each step of the preconditioning is achieved by simultaneously taking an iteration of the SOR method and an iteration of the reverse SOR method (equations taken in reverse order) and averaging the results. This yields a symmetric preconditioner that can be implemented on parallel computers by performing the forward and reverse SOR iterations simultaneously. We give necessary and sufficient conditions for additive preconditioners to be positive definite.
We find an optimal parameter, ω, for the SOR-Additive linear stationary iterative method applied to 2-cyclic matrices. We show this method is asymptotically twice as fast as SSOR when the optimal ω is used.
We compare our preconditioner to the SSOR polynomial preconditioner for a model problem. With the optimal ω, our preconditioner was found to be as effective as the SSOR polynomial preconditioner in reducing the number of conjugate gradient iterations. Parallel implementations of both methods are discussed for vector and multiple processors. Results show that if the same number of processors are used for both preconditioners, the SSOR preconditioner is more effective. If twice as many processors are used for the SOR-Additive preconditioner, it becomes more efficient than the SSOR preconditioner when the number of equations assigned to a processor is small. These results are confirmed by the Blue Chip emulator at the University of Washington. |
---|---|
ISSN: | 0167-8191 1872-7336 |
DOI: | 10.1016/0167-8191(89)90116-6 |