Measurement of Contact Angles at Carbon Fiber–Water–Air Triple-Phase Boundaries Inside Gas Diffusion Layers Using X‑ray Computed Tomography
Gas diffusion layers (GDLs) are porous carbonaceous layers that are widely used in energy conversion and storage devices. Simulation of water transport through GDLs, in a polymer electrolyte fuel cell (PEFC), for example, typically uses goniometer-measured external contact angles. Until now, there i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-05, Vol.13 (17), p.20002-20013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gas diffusion layers (GDLs) are porous carbonaceous layers that are widely used in energy conversion and storage devices. Simulation of water transport through GDLs, in a polymer electrolyte fuel cell (PEFC), for example, typically uses goniometer-measured external contact angles. Until now, there is no well-developed method to obtain contact angles inside the GDLs. AlRatrout et al. developed an open-source code to compute local contact angles at triple-phase contact points from segmented micro-X-ray computed tomography (X-ray CT) images of porous rocks. We apply it, for the first time, to micro-X-ray CT images of water-filled commercial GDLs and compute local contact angles at internal GDL fiber–water–air triple-phase contact points. We obtain a state of mixed wettability (hydrophilic and hydrophobic) inside all GDL samples, with a broad range of contact angles, instead of one hydrophobic contact angle found from goniometer experiments. Lattice Boltzmann water transport simulations performed with these distributed contact angles produce results that are in better agreement with experimental data. We also obtain high-resolution X-ray photoelectron spectroscopy (XPS) data of the GDL samples and find that the concentration of oxide species correlates strongly with the measured hydrophilicity. The method introduced here can help rationally design GDLs and directly quantify their internal surface wettability that is needed for accurate predictions of their functionality in energy technology devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c00849 |