A digital DS spread-spectrum receiver with joint channel and Doppler shift estimation

A digital spread-spectrum receiver design is presented for communication over multipath channels with severe Doppler shifts. The characteristics of the underwater channel relevant to spread-spectrum system design are discussed, and a channel model for short-range communications (less than 10 km) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 1991-08, Vol.39 (8), p.1255-1267
Hauptverfasser: Iltis, R.A., Fuxjaeger, A.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A digital spread-spectrum receiver design is presented for communication over multipath channels with severe Doppler shifts. The characteristics of the underwater channel relevant to spread-spectrum system design are discussed, and a channel model for short-range communications (less than 10 km) is defined. The receiver considered uses a digital coherent RAKE combiner, coupled with an extended Kalman filter (EKF)-based estimator for channel parameters and pseudonoise code delay. Receiver performance is evaluated by computing average bit-error rate (BER) versus iterations of the EKF joint estimator, using both fixed and time-varying channels. It is shown that the BER obtained using the EKF joint estimator closely tracks the optimum BER obtained when the channel, delay, and Doppler parameters are known exactly. Finally, the Cramer-Rao lower bound for time-invariant joint channel, delay, and Doppler estimation is derived, and compared with the ensemble averaged mean-squared error of the EKF estimator.< >
ISSN:0090-6778
1558-0857
DOI:10.1109/26.134015