Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy
Nonalcoholic fatty liver disease (NAFLD) is related to elevated cytoplasmic calcium signaling in hepatocytes, which may be mediated by store-operated calcium channel (SOCC) and inositol triphosphate receptor (IP3R). However, the regulatory effect of calcium signaling on lipid accumulation and degene...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2021-08, Vol.476 (8), p.3163-3175 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonalcoholic fatty liver disease (NAFLD) is related to elevated cytoplasmic calcium signaling in hepatocytes, which may be mediated by store-operated calcium channel (SOCC) and inositol triphosphate receptor (IP3R). However, the regulatory effect of calcium signaling on lipid accumulation and degeneration in hepatocytes and the underlying molecular mechanism remain unknown. Autophagy inhibition promotes lipid accumulation and steatosis in hepatocytes. However, the association between elevated calcium signaling and autophagy inhibition in hepatocytes and its effect on hepatocyte fatty lesions remain unclear. Here, we established a mouse hepatocyte fatty gradient model using oleic acid. SOCC and IP3R channel opening and cytoplasmic calcium levels gradually increased with the hepatocyte pimelosis degree, whereas autophagy gradually decreased. We also established an optimal oleic acid (OOA) hepatocyte model, observing significantly increased SOCC and IP3R channel opening and calcium influx alongside significantly decreased autophagy and aggravated cellular fatty lesion. Calcium channel blockers (CCBs) and calcium channel gene silencing reagents (CCGSRs), respectively, reversed these effects, indicating that elevated cytoplasmic calcium signaling promotes NAFLD occurrence and the development by inhibiting hepatocyte autophagy. In the OOA model, upregulated extracellular regulated protein kinases 1/2 (ERK1/2), which can be regulated by SOCC and IP3R proteins transient receptor potential canonical 1 (TRPC1)/IP3R with elevated cytoplasmic calcium signaling, over-inhibited forkhead/winged helix O (FOXO) signaling and over-activated mammalian target of rapamycin complex 1 (mTORC1) signaling. Over-inhibited FOXO signaling significantly downregulated autophagy-related gene 12, which inhibits autophagosome maturation, while over-activated mTORC1 signaling over-inactivated Unc-51 like autophagy activating kinase 1, which inhibits preautophagosome formation. CCBs and CCGSRs recovered autophagy by significantly downregulating ERK1/2 to block abnormal changes in FOXO and mTORC1 signaling. Our findings indicate that upregulated SOCC and IP3R channels and subsequent elevated cytoplasmic calcium signaling in hepatocyte fatty lesions inhibits hepatocyte autophagy through (TRPC1/IP3R)/ERK/(FOXO/mTORC1) signaling pathways, causes lipid accumulation and degeneration in hepatocytes, and promotes NAFLD occurrence and development. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-021-04150-0 |