Fucoxanthin rescues dexamethasone induced C2C12 myotubes atrophy
Muscle atrophy and weakness are the adverse effects of long-term or high dose usage of glucocorticoids. In the present study, we explored the effects of fucoxanthin (10 μM) on dexamethasone (10 μM)-induced atrophy in C2C12 myotubes and investigated its underlying mechanisms. The diameter of myotubes...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2021-07, Vol.139, p.111590-111590, Article 111590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Muscle atrophy and weakness are the adverse effects of long-term or high dose usage of glucocorticoids. In the present study, we explored the effects of fucoxanthin (10 μM) on dexamethasone (10 μM)-induced atrophy in C2C12 myotubes and investigated its underlying mechanisms. The diameter of myotubes was observed under a light microscope, and the expression of myosin heavy chain (MyHC), proteolysis-related, autophagy-related, apoptosis-related, and mitochondria-related proteins was analyzed by western blots or immunoprecipitation. Fucoxanthin alleviates dexamethasone-induced muscle atrophy in C2C12 myotubes, indicated by increased myotubes diameter and expression of MyHC, decreased expression of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1). Through activating SIRT1, fucoxanthin inhibits forkhead box O (FoxO) transcriptional activity to reduce protein degradation, induces autophagy to enhance degraded protein clearance, promotes mitochondrial function and diminishes apoptosis. In conclusion, we identified fucoxanthin ameliorates dexamethasone induced C2C12 myotubes atrophy through SIRT1 activation.
•Fucoxanthin ameliorates C2C12 myotube atrophy induced by dexamethasone.•Fucoxanthin improves myotube atrophy is related to the activation of SIRT1.•Fucoxanthin improves protein degradation, enhance mitochondrial function, and balance autophagy and apoptosis by activating SIRT1. |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2021.111590 |