Computational Saturation Screen Reveals the Landscape of Mutations in Human Fumarate Hydratase

Single amino acid substitutions within protein structures often manifest with clinical conditions in humans. The mutation of a single amino can significantly alter protein folding and stability, or change protein dynamics to influence function. The chemical engineering field has developed a large to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-04, Vol.61 (4), p.1970-1980
Hauptverfasser: Shorthouse, David, Hall, Michael W. J, Hall, Benjamin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single amino acid substitutions within protein structures often manifest with clinical conditions in humans. The mutation of a single amino can significantly alter protein folding and stability, or change protein dynamics to influence function. The chemical engineering field has developed a large toolset for predicting the influence of point mutations with the aim of guiding the design of improved and more stable proteins. Here, we reverse this general protocol and adapt these tools for the prediction of damaging mutations within proteins. Mutations to fumarate hydratase (FH), an enzyme of the citric acid cycle, can lead to human diseases. The inactivation of FH by mutation causes leiomyomas and renal cell carcinoma by subsequent fumarate buildup and reduction in available malate. We present a scheme for accurately predicting the clinical effects of every possible mutation in FH by adaptation to a database of characterized damaging and benign mutations. Using energy prediction tools Rosetta and FoldX coupled with molecular dynamics simulations, we accurately predict individual mutations as well as mutational hotspots with a high disruptive capability in FH. Furthermore, through dynamic analysis, we find that hinge regions of the protein can be stabilized or destabilized by mutations, with mechanistic implications for the functional ability of the enzyme. Finally, we categorize all potential mutations in FH into functional groups, predicting which known mutations in the human population are loss of function, therefore having clinical implications, and validate our findings through metabolomics data of characterized human cell lines.
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.1c00063