Competitive neural architecture for hardware solution to the assignment problem

A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1991, Vol.4 (4), p.431-442
Hauptverfasser: Eberhardt, S.P., Daud, T., Kerns, D.A., Brown, T.X, Thakoor, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 4
container_start_page 431
container_title Neural networks
container_volume 4
creator Eberhardt, S.P.
Daud, T.
Kerns, D.A.
Brown, T.X
Thakoor, A.P.
description A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.
doi_str_mv 10.1016/0893-6080(91)90039-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25125841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0893608091900398</els_id><sourcerecordid>25125841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoINtN_kEOPpTSHpzow5ZHl0JZmg9YyCU5C0UeZ1VsaSvJG_Lvo80uOfYkRvPMO8NDyCWjV4wyeU1BiVpSoD8U-6koFaqGE7Jg0Kmad8C_kMUncka-pvSXUiqhEQvysArTFrPLboeVxzmasTLRblxGm-eI1RBitTGxfzWlSGGcswu-yqHKG6xMSu7FT-hztY3hecTpnJwOZkx4cXyX5Onmz-Pqrl4_3N6vfq9rK6DNddNT0YIcemlF01tpAagUAqCDng-qtdgohq0VxoJkEikwBS10hjXlEzuxJN8PuWXvvxlT1pNLFsfReAxz0rxlvIWGFbA5gDaGlCIOehvdZOKbZlTv7em9Gr1XoxXTH_Y0lLFvx3yTrBmHaLx16XO2pR2XnSrY5QHzJhntc0yaKcVLSMf5_spfhzYWFTuHUSfr0FvsXSx-dR_c_894B5i9i8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25125841</pqid></control><display><type>article</type><title>Competitive neural architecture for hardware solution to the assignment problem</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</creator><creatorcontrib>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</creatorcontrib><description>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/0893-6080(91)90039-8</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Ltd</publisher><subject>Annealing ; Applied sciences ; Assignment problem ; Competition ; Computer Operations And Hardware ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Hysteresis ; Neural network ; Neural networks ; Neuroprocessor ; VLSI</subject><ispartof>Neural networks, 1991, Vol.4 (4), p.431-442</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</citedby><cites>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0893608091900398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5072679$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberhardt, S.P.</creatorcontrib><creatorcontrib>Daud, T.</creatorcontrib><creatorcontrib>Kerns, D.A.</creatorcontrib><creatorcontrib>Brown, T.X</creatorcontrib><creatorcontrib>Thakoor, A.P.</creatorcontrib><title>Competitive neural architecture for hardware solution to the assignment problem</title><title>Neural networks</title><description>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Assignment problem</subject><subject>Competition</subject><subject>Computer Operations And Hardware</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Neuroprocessor</subject><subject>VLSI</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kE1r3DAQhkVoINtN_kEOPpTSHpzow5ZHl0JZmg9YyCU5C0UeZ1VsaSvJG_Lvo80uOfYkRvPMO8NDyCWjV4wyeU1BiVpSoD8U-6koFaqGE7Jg0Kmad8C_kMUncka-pvSXUiqhEQvysArTFrPLboeVxzmasTLRblxGm-eI1RBitTGxfzWlSGGcswu-yqHKG6xMSu7FT-hztY3hecTpnJwOZkx4cXyX5Onmz-Pqrl4_3N6vfq9rK6DNddNT0YIcemlF01tpAagUAqCDng-qtdgohq0VxoJkEikwBS10hjXlEzuxJN8PuWXvvxlT1pNLFsfReAxz0rxlvIWGFbA5gDaGlCIOehvdZOKbZlTv7em9Gr1XoxXTH_Y0lLFvx3yTrBmHaLx16XO2pR2XnSrY5QHzJhntc0yaKcVLSMf5_spfhzYWFTuHUSfr0FvsXSx-dR_c_894B5i9i8Y</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Eberhardt, S.P.</creator><creator>Daud, T.</creator><creator>Kerns, D.A.</creator><creator>Brown, T.X</creator><creator>Thakoor, A.P.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1991</creationdate><title>Competitive neural architecture for hardware solution to the assignment problem</title><author>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Assignment problem</topic><topic>Competition</topic><topic>Computer Operations And Hardware</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Neuroprocessor</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberhardt, S.P.</creatorcontrib><creatorcontrib>Daud, T.</creatorcontrib><creatorcontrib>Kerns, D.A.</creatorcontrib><creatorcontrib>Brown, T.X</creatorcontrib><creatorcontrib>Thakoor, A.P.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberhardt, S.P.</au><au>Daud, T.</au><au>Kerns, D.A.</au><au>Brown, T.X</au><au>Thakoor, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive neural architecture for hardware solution to the assignment problem</atitle><jtitle>Neural networks</jtitle><date>1991</date><risdate>1991</risdate><volume>4</volume><issue>4</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Ltd</pub><doi>10.1016/0893-6080(91)90039-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1991, Vol.4 (4), p.431-442
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_25125841
source Elsevier ScienceDirect Journals; NASA Technical Reports Server
subjects Annealing
Applied sciences
Assignment problem
Competition
Computer Operations And Hardware
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Hysteresis
Neural network
Neural networks
Neuroprocessor
VLSI
title Competitive neural architecture for hardware solution to the assignment problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20neural%20architecture%20for%20hardware%20solution%20to%20the%20assignment%20problem&rft.jtitle=Neural%20networks&rft.au=Eberhardt,%20S.P.&rft.date=1991&rft.volume=4&rft.issue=4&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/0893-6080(91)90039-8&rft_dat=%3Cproquest_cross%3E25125841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25125841&rft_id=info:pmid/&rft_els_id=0893608091900398&rfr_iscdi=true