Competitive neural architecture for hardware solution to the assignment problem
A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g.,...
Gespeichert in:
Veröffentlicht in: | Neural networks 1991, Vol.4 (4), p.431-442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 4 |
container_start_page | 431 |
container_title | Neural networks |
container_volume | 4 |
creator | Eberhardt, S.P. Daud, T. Kerns, D.A. Brown, T.X Thakoor, A.P. |
description | A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation. |
doi_str_mv | 10.1016/0893-6080(91)90039-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25125841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0893608091900398</els_id><sourcerecordid>25125841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoINtN_kEOPpTSHpzow5ZHl0JZmg9YyCU5C0UeZ1VsaSvJG_Lvo80uOfYkRvPMO8NDyCWjV4wyeU1BiVpSoD8U-6koFaqGE7Jg0Kmad8C_kMUncka-pvSXUiqhEQvysArTFrPLboeVxzmasTLRblxGm-eI1RBitTGxfzWlSGGcswu-yqHKG6xMSu7FT-hztY3hecTpnJwOZkx4cXyX5Onmz-Pqrl4_3N6vfq9rK6DNddNT0YIcemlF01tpAagUAqCDng-qtdgohq0VxoJkEikwBS10hjXlEzuxJN8PuWXvvxlT1pNLFsfReAxz0rxlvIWGFbA5gDaGlCIOehvdZOKbZlTv7em9Gr1XoxXTH_Y0lLFvx3yTrBmHaLx16XO2pR2XnSrY5QHzJhntc0yaKcVLSMf5_spfhzYWFTuHUSfr0FvsXSx-dR_c_894B5i9i8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25125841</pqid></control><display><type>article</type><title>Competitive neural architecture for hardware solution to the assignment problem</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</creator><creatorcontrib>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</creatorcontrib><description>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/0893-6080(91)90039-8</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Ltd</publisher><subject>Annealing ; Applied sciences ; Assignment problem ; Competition ; Computer Operations And Hardware ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Hysteresis ; Neural network ; Neural networks ; Neuroprocessor ; VLSI</subject><ispartof>Neural networks, 1991, Vol.4 (4), p.431-442</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</citedby><cites>FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0893608091900398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5072679$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberhardt, S.P.</creatorcontrib><creatorcontrib>Daud, T.</creatorcontrib><creatorcontrib>Kerns, D.A.</creatorcontrib><creatorcontrib>Brown, T.X</creatorcontrib><creatorcontrib>Thakoor, A.P.</creatorcontrib><title>Competitive neural architecture for hardware solution to the assignment problem</title><title>Neural networks</title><description>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Assignment problem</subject><subject>Competition</subject><subject>Computer Operations And Hardware</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Neuroprocessor</subject><subject>VLSI</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kE1r3DAQhkVoINtN_kEOPpTSHpzow5ZHl0JZmg9YyCU5C0UeZ1VsaSvJG_Lvo80uOfYkRvPMO8NDyCWjV4wyeU1BiVpSoD8U-6koFaqGE7Jg0Kmad8C_kMUncka-pvSXUiqhEQvysArTFrPLboeVxzmasTLRblxGm-eI1RBitTGxfzWlSGGcswu-yqHKG6xMSu7FT-hztY3hecTpnJwOZkx4cXyX5Onmz-Pqrl4_3N6vfq9rK6DNddNT0YIcemlF01tpAagUAqCDng-qtdgohq0VxoJkEikwBS10hjXlEzuxJN8PuWXvvxlT1pNLFsfReAxz0rxlvIWGFbA5gDaGlCIOehvdZOKbZlTv7em9Gr1XoxXTH_Y0lLFvx3yTrBmHaLx16XO2pR2XnSrY5QHzJhntc0yaKcVLSMf5_spfhzYWFTuHUSfr0FvsXSx-dR_c_894B5i9i8Y</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Eberhardt, S.P.</creator><creator>Daud, T.</creator><creator>Kerns, D.A.</creator><creator>Brown, T.X</creator><creator>Thakoor, A.P.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1991</creationdate><title>Competitive neural architecture for hardware solution to the assignment problem</title><author>Eberhardt, S.P. ; Daud, T. ; Kerns, D.A. ; Brown, T.X ; Thakoor, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4d03586fd6c34dc6c8806338878d2f95ce491e5c3ac8616e08198587a145c3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Assignment problem</topic><topic>Competition</topic><topic>Computer Operations And Hardware</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Neuroprocessor</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberhardt, S.P.</creatorcontrib><creatorcontrib>Daud, T.</creatorcontrib><creatorcontrib>Kerns, D.A.</creatorcontrib><creatorcontrib>Brown, T.X</creatorcontrib><creatorcontrib>Thakoor, A.P.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberhardt, S.P.</au><au>Daud, T.</au><au>Kerns, D.A.</au><au>Brown, T.X</au><au>Thakoor, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive neural architecture for hardware solution to the assignment problem</atitle><jtitle>Neural networks</jtitle><date>1991</date><risdate>1991</risdate><volume>4</volume><issue>4</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>A neural network architecture for competitive assignment is presented, with details of a very large scale integration (VLSI) design and characterization of critical circuits fabricated in complementary metal-oxide semiconductor (CMOS). The assignment problem requires that elements of two sets (e.g., resources and consumers) be associated with each other such as to minimize the total cost of the associations. Unlike previous neural implementations, association costs are applied locally to processing units (PUs, i.e., neurons), reducing connectivity to VLSI-compatible O(number of PUs). Also, each element in either set may be independently programmed to associate with one, several, or a range of elements of the other set. A novel method of “hysteretic annealing,” effected by gradually increasing positive feedback within each PU, was developed and compared in simulations to mean-field annealing implemented by increasing PU gain over time. The simulations (to size 64 × 64) consistently found optimal or near-optimal solutions, with settling times of about 150 microseconds, except for a few variable-gain annealing trials that exhibited oscillation.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Ltd</pub><doi>10.1016/0893-6080(91)90039-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 1991, Vol.4 (4), p.431-442 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_25125841 |
source | Elsevier ScienceDirect Journals; NASA Technical Reports Server |
subjects | Annealing Applied sciences Assignment problem Competition Computer Operations And Hardware Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Hysteresis Neural network Neural networks Neuroprocessor VLSI |
title | Competitive neural architecture for hardware solution to the assignment problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20neural%20architecture%20for%20hardware%20solution%20to%20the%20assignment%20problem&rft.jtitle=Neural%20networks&rft.au=Eberhardt,%20S.P.&rft.date=1991&rft.volume=4&rft.issue=4&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/0893-6080(91)90039-8&rft_dat=%3Cproquest_cross%3E25125841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25125841&rft_id=info:pmid/&rft_els_id=0893608091900398&rfr_iscdi=true |