Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass

Exogenous application of melatonin to plants is a promising approach for assisted phytoremediation of soil lead (Pb). In this study, we investigated the effects of foliar applications of melatonin to mature bermudagrass ( Cynodon dactylon (L.) Pers.), a fast-growing perennial with potential as a non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-08, Vol.28 (32), p.44374-44388
Hauptverfasser: Xie, Chengcheng, Pu, Siyi, Xiong, Xi, Chen, Shuyu, Peng, Lingli, Fu, Jingyi, Sun, Lingxia, Guo, Baimeng, Jiang, Mingyan, Li, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exogenous application of melatonin to plants is a promising approach for assisted phytoremediation of soil lead (Pb). In this study, we investigated the effects of foliar applications of melatonin to mature bermudagrass ( Cynodon dactylon (L.) Pers.), a fast-growing perennial with potential as a non-hyperaccumulator plant for Pb phytoremediation. Following exposure to Pb (3000 mg kg -1 ) for 30 days, decreases in biomass and chlorophyll production, degradation of thylakoid membranes, reduced photosynthesis and PSII (reaction center of photosystem II) efficiency, and elevated oxidative stress were found. Foliar applications of melatonin to Pb-stressed bermudagrass mitigated these negative effects, restoring photosynthetic pigments and chloroplast ultrastructure, subsequently improving photosynthesis and photochemistry efficiency of PSII. Exogenous melatonin also eliminated the excessive accumulations of reactive oxygen species (ROS) and methylglyoxal (MG) which associated with cellular redox homeostasis by improving ascorbic acid (AsA) and reduced glutathione (GSH) contents, redox status of GSH/GSSG (oxidative glutathione), and key enzymes activities in both AsA-GSH and glyoxalase systems. Ultimately, treating bermudagrass plants with exogenous melatonin elevated biomass production and disproportionally greater Pb translocation to roots and senescent leaves. This collectively resulted in 21% greater recovery of Pb compared to Pb-stressed bermudagrass lacking melatonin application. Overall, results from this study demonstrated the beneficial roles of melatonin for improving the effectiveness of bermudagrass as a non-hyperaccumulator plant for soil Pb phytoremediation.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-13790-0