Realizing Fast Charge Diffusion in Oriented Iron Carbodiimide Structure for High-Rate Sodium-Ion Storage Performance

Iron carbodiimide (FeNCN) belongs to a type of metal compounds with a more covalent bonding structure compared to common transition metal oxides. It could provide possibilities for various structural designs with improved charge-transfer kinetics in battery systems. Moreover, these possibilities are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-04, Vol.15 (4), p.6410-6419
Hauptverfasser: Li, Jiayin, Wang, Rong, Guo, Penghui, Liu, Xing, Hu, Yunfei, Xu, Zhanwei, Liu, Yijun, Cao, Liyun, Huang, Jianfeng, Kajiyoshi, Koji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron carbodiimide (FeNCN) belongs to a type of metal compounds with a more covalent bonding structure compared to common transition metal oxides. It could provide possibilities for various structural designs with improved charge-transfer kinetics in battery systems. Moreover, these possibilities are still highly expected for promoting enhancement in rate performance of sodium (Na)-ion battery. Herein, oriented FeNCN crystallites were grown on the carbon-based substrate with exposed {010} faces along the [001] direction (O-FeNCN/S). It provides a high Na-ion storage capacity with excellent rate capability (680 mAh g–1 at 0.2 A g–1 and 360 mAh g–1 at 20 A g–1), presenting rapid charge-transfer kinetics with high contribution of pseudocapacitance during a typical conversion reaction. This high rate performance is attributed to the oriented morphology of FeNCN crystallites. Its orientation along [001] maintains preferred Na-ion diffusion along the two directions in the entire morphology of O-FeNCN/S, supporting fast Na-ion storage kinetics during the charge/discharge process. This study could provide ideas toward the understanding of the rational structural design of metal carbodiimides for attaining high electrochemical performance in future.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c08314