Bioengineered in vitro models of leukocyte-vascular interactions
Leukocytes continuously circulate our body through the blood and lymphatic vessels. To survey invaders or abnormalities and defend our body against them, blood-circulating leukocytes migrate from the blood vessels into the interstitial tissue space (leukocyte extravasation) and exit the interstitial...
Gespeichert in:
Veröffentlicht in: | Biochemical Society transactions 2021-04, Vol.49 (2), p.693-704 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leukocytes continuously circulate our body through the blood and lymphatic vessels. To survey invaders or abnormalities and defend our body against them, blood-circulating leukocytes migrate from the blood vessels into the interstitial tissue space (leukocyte extravasation) and exit the interstitial tissue space through draining lymphatic vessels (leukocyte intravasation). In the process of leukocyte trafficking, leukocytes recognize and respond to multiple biophysical and biochemical cues in these vascular microenvironments to determine adequate migration and adhesion pathways. As leukocyte trafficking is an essential part of the immune system and is involved in numerous immune diseases and related immunotherapies, researchers have attempted to identify the key biophysical and biochemical factors that might be responsible for leukocyte migration, adhesion, and trafficking. Although intravital live imaging of in vivo animal models has been remarkably advanced and utilized, bioengineered in vitro models that recapitulate complicated in vivo vascular structure and microenvironments are needed to better understand leukocyte trafficking since these in vitro models better allow for spatiotemporal analyses of leukocyte behaviors, decoupling of interdependent biological factors, better controlling of experimental parameters, reproducible experiments, and quantitative cellular analyses. This review discusses bioengineered in vitro model systems that are developed to study leukocyte interactions with complex microenvironments of blood and lymphatic vessels. This review focuses on the emerging concepts and methods in generating relevant biophysical and biochemical cues. Finally, the review concludes with expert perspectives on the future research directions for investigating leukocyte and vascular biology using the in vitro models. |
---|---|
ISSN: | 0300-5127 1470-8752 |
DOI: | 10.1042/BST20200620 |