A comprehensive review of the imbalance classification of protein post-translational modifications

Post-translational modifications (PTMs) play significant roles in regulating protein structure, activity and function, and they are closely involved in various pathologies. Therefore, the identification of associated PTMs is the foundation of in-depth research on related biological mechanisms, disea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-09, Vol.22 (5)
Hauptverfasser: Dou, Lijun, Yang, Fenglong, Xu, Lei, Zou, Quan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Post-translational modifications (PTMs) play significant roles in regulating protein structure, activity and function, and they are closely involved in various pathologies. Therefore, the identification of associated PTMs is the foundation of in-depth research on related biological mechanisms, disease treatments and drug design. Due to the high cost and time consumption of high-throughput sequencing techniques, developing machine learning-based predictors has been considered an effective approach to rapidly recognize potential modified sites. However, the imbalanced distribution of true and false PTM sites, namely, the data imbalance problem, largely effects the reliability and application of prediction tools. In this article, we conduct a systematic survey of the research progress in the imbalanced PTMs classification. First, we describe the modeling process in detail and outline useful data imbalance solutions. Then, we summarize the recently proposed bioinformatics tools based on imbalanced PTM data and simultaneously build a convenient website, ImClassi_PTMs (available at lab.malab.cn/∼dlj/ImbClassi_PTMs/), to facilitate the researchers to view. Moreover, we analyze the challenges of current computational predictors and propose some suggestions to improve the efficiency of imbalance learning. We hope that this work will provide comprehensive knowledge of imbalanced PTM recognition and contribute to advanced predictors in the future.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbab089